Controlling Electrons in Graphene Opens a New Path to Potential Electronic Devices


Reading time ( words)

For the first time, scientists created a tunable artificial atom in graphene. They demonstrated that a vacancy in graphene can be charged in a controllable way such that electrons can be localized to mimic the electron orbitals of an artificial atom. Importantly, the trapping mechanism is reversible (turned on and off) and the energy levels can be tuned. 

Starting with a missing atom, referred to as a vacancy (top left), and applying an electric charge that attracts electrons to the region, the electrons are confined into “orbitals” to create an “artificial atom” (lower right). The images are electron concentration maps obtained with scanning tunneling spectroscopy that visualize the vacancy, and then the electron orbitals (in red) of an artificial atom created in graphene. R1, R1’ and R2 show the orbitals in order of increasing energy.

The results from this research demonstrate a viable, controllable, and reversible technique to confine electrons in graphene. The energy states of the electrons are “tunable.” This tunability opens new avenues of research into the unique physics electron behavior in graphene. Further, it provides a methodology that could facilitate the use of graphene-based devices for future electronics, communications, and sensors. 

Graphene’s remarkable electronic properties have fueled the vision of developing graphene-based devices to enable lighter, faster and smarter electronics and advanced computing applications. But progress towards this goal has been slowed by the inability to confine its charge carriers with applied voltage. A team led by researchers from Rutgers University developed a technique to stably host and controllably modify localized charge states in graphene. The researchers created vacancies (missing carbon atoms) in the graphene lattice, by bombarding the sample with charged helium atoms (He+ ions). They demonstrated that it is possible to deposit a positive charge at the vacancy site and to charge it gradually by applying voltage pulses with a scanning tunneling microscope tip. As the charge on the vacancy increases, its interaction with the conduction electrons in graphene undergoes a transition. The interaction turns into a regime where the electrons can be trapped into quasi-bound energy states that resemble an artificial atom. The team further showed that the quasi-bound states at the vacancy site are tunable with application of an external electric field. The trapping mechanism can be turned on and off, providing a new paradigm to control and guide electrons in graphene.

Share


Suggested Items

Graphene Device Could Substantially Increase the Energy Efficiency of Fossil Fuel-powered Cars

06/02/2016 | University of Manchester
A graphene-based electrical nano-device has been created which could substantially increase the energy efficiency of fossil fuel-powered cars.

Global LED Market Expected to Record a CAGR of close to 17% until 2020

05/26/2016 | Business Wire
This research report titled ‘Global LED Market 2016-2020’ provides an in-depth analysis of market growth in terms of revenue and emerging market trends. The market size is calculated on the basis of revenue generated from four segments, including general lighting, backlighting, automotive lighting, and others.

The Real Martian Spinoffs Part 3: Harnessing the Power

10/15/2015 | NASA
It will be the most powerful rocket ever built. More powerful than the mighty Saturn V that took humans to the moon, the Space Launch System (SLS), NASA’s newest rocket currently under development, will have the capability to send astronauts deeper into space than ever before. With SLS and the Orion capsule, humans will no longer have to dream of walking on Mars: They finally will do it.



Copyright © 2017 I-Connect007. All rights reserved.