Photonic Hypercrystals for Control of Light-Matter Interaction


Reading time ( words)

Control of light-matter interaction is central to fundamental phenomena and technologies such as photosynthesis, lasers, LEDs and solar cells. City College of New York researchers have now demonstrated a new class of artificial media called photonic hypercrystals that can control light-matter interaction in unprecedented ways.

This could lead to such benefits as ultrafast LEDs for Li-Fi (a wireless technology that transmits high-speed data using visible light communication),  enhanced absorption in solar cells and the development of single photon emitters for quantum information processing, said Vinod M. Menon, professor of physics in City College’s Division of Science who led the research.

Photonic crystals and metamaterials are two of the most well-known artificial materials used to manipulate light. However, they suffer from drawbacks such as bandwidth limitation and poor light emission. In their research, Menon and his team overcame these drawbacks by developing hypercrystals that take on the best of both photonic crystals and metamaterials and do even better. They demonstrated significant increase in both light emission rate and intensity from nanomaterials embedded inside the hypercrystals. 

The emergent properties of the hypercrystals arise from the unique combination of length scales of the features in the hypercrystal as well as the inherent properties of the nanoscale structures.

The CCNY research appears in the latest issue of the Proceedings of the National Academy of Sciences. The team included graduate students Tal Galfsky and Jie Gu from Menon’s research group in CCNY’s Physics Department and Evgenii Narimanov (Purdue University), who first theoretically predicted the hypercrystals. The research was supported by the Army Research Office, the National Science Foundation – Division of Materials Research MRSEC program, and the Gordon and Betty Moore Foundation.

About The City College of New York

Since 1847, The City College of New York has provided low-cost, high-quality education for New Yorkers in a wide variety of disciplines. Today more than 16,000 students pursue undergraduate and graduate degrees in eight professional schools and divisions, driven by significant funded research, creativity and scholarship.  Now celebrating its 170th anniversary, CCNY is as diverse, dynamic and visionary as New York City itself.

Share

Print


Suggested Items

Brittle Pals Bond for Flexible Electronics

05/13/2019 | Rice University
Mixing two brittle materials to make something flexible defies common sense, but Rice University scientists have done just that to make a novel dielectric. Dielectrics are the polarized insulators in batteries and other devices that separate positive and negative electrodes. Without them, there are no electronic devices.

Beyond Scaling: An Electronics Resurgence Initiative

06/05/2017 | DARPA
The Department of Defense’s proposed FY 2018 budget includes a $75 million allocation for DARPA in support of a new, public-private “electronics resurgence” initiative. The initiative seeks to undergird a new era of electronics in which advances in performance will be catalyzed not just by continued component miniaturization but also by radically new microsystem materials, designs, and architectures.

DARPA Researchers Develop Novel Method for Room-Temperature Atomic Layer Deposition

09/01/2016 | DARPA
DARPA-supported researchers have developed a new approach for synthesizing ultrathin materials at room temperature—a breakthrough over industrial approaches that have demanded temperatures of 800 degrees Celsius or more. T



Copyright © 2019 I-Connect007. All rights reserved.