Data Centres and Telecommunication Applications Drive Opportunities for Advanced Photonic Systems


Reading time ( words)

The need for high-speed data transmission and increased data traffic in cloud computing have enabled convergence of complementary metal-oxide semiconductors (CMOS) technology, three-dimensional (ED) integration technology, and fibre-optic communication technology to create photonic integrated circuits. In the near future, by leveraging CMOS technology, the silicon medium has the potential to be fabricated and manufactured on a much larger scale. Some of the most disruptive innovations in silicon photonics are high-speed Ethernet switches, interconnects, photo detectors and transceivers, which enable high-bandwidth communications at a lower cost through low form factor, low power generation and increased performance integration into a single device.

Frost & Sullivan’s new analysis of “Innovations in Silicon Photonics” finds that the North American region has seen significant growth in silicon photonic research and development (R&D) due to the location of hyper-scale data centre facilities, while Asia-Pacific has witnessed investments to improve methods for large-scale manufacturing of silicon photonic components and circuits. The study analyses the current status of the silicon photonics industry, including factors that influence development and adoption. Innovation hotspots, key developers, growth opportunities, patents, funding trends, and applications enabled by silicon photonics are also discussed.

“Currently, innovations in silicon photonics are driven by the convergence of optical and electronic capabilities on a single chip. The innovations are highly application-specific, focusing on high-speed optical communications,” said Frost & Sullivan TechVision Research Analyst Naveen Kannan. “Further research and investments are looking towards developing next-generation, high-speed quantum computing. Researchers have transformed high-speed computing by achieving quantum entanglement using two quantum bits in a silicon chip. This will enable high-speed database search, molecular simulation, and drug designing.”

Wide-scale adoption is expected in various industries, such as data centres, cloud computing, biomedical and automotive. Building low-power interconnects that use light to transfer data rapidly is the main application area within data centres. In the biomedical industry, silicon photonics will enable the creation of highly sensitive biosensors for diagnostic applications.

“Photonic integrated circuits require the designing of photonic components simultaneously with electrical and electronic components. This can be challenging,” noted Naveen Kannan. “Players can overcome this challenge by offering services in terms of developing innovative photonic integrated circuit design, product prototyping, and testing methodology as per customer requirements.”

Innovations in Silicon Photonics is part of Frost & Sullivan’s TechVision Microelectronics subscription program.

About TechVision

Frost & Sullivan's global TechVision practice is focused on innovation, disruption and convergence, and provides a variety of technology-based alerts, newsletters and research services as well as growth consulting services. Its premier offering, the TechVision program, identifies and evaluates the most valuable emerging and disruptive technologies enabling products with near-term potential. A unique feature of the TechVision program is an annual selection of 50 technologies that can generate convergence scenarios, possibly disrupt the innovation landscape, and drive transformational growth.

Share


Suggested Items

DARPA’s Drive to Keep the Microelectronics Revolution at Full Speed Builds Its Own Momentum

08/28/2017 | DARPA
To perpetuate the pace of innovation and progress in microelectronics technology over the past half-century, it will take an enormous village rife with innovators. This week, about 100 of those innovators throughout the broader technology ecosystem, including participants from the military, commercial, and academic sectors, gathered at DARPA headquarters at the kickoff meeting for the Agency’s new CHIPS program, known in long form as the Common Heterogeneous Integration and Intellectual Property (IP) Reuse Strategies program.

Terahertz Wireless Could Make Spaceborne Satellite Links as Fast as Fiber-Optic Links

02/06/2017 | Panasonic Corporation
Hiroshima University, National Institute of Information and Communications Technology, and Panasonic Corporation announced the development of a terahertz (THz) transmitter capable of transmitting digital data at a rate exceeding 100 gigabits (= 0.1 terabit) per second over a single channel using the 300-GHz band.

Lab Tests Armored Vehicles with Auto Industry 'Dummies'

07/25/2016 | U.S. Army
In an unassuming warehouse on Aberdeen Proving Ground, Maryland sit nearly 50 men in uniform, waiting for their mission during an upcoming test event. They're sporting Army Combat Uniforms, standard-issue boots, a crane hook protruding from their heads, and a plethora of color-coded wires spilling out the back of their necks.



Copyright © 2017 I-Connect007. All rights reserved.