Planning a PCB: Signal Integrity and Controlled Impedance Considerations


Reading time ( words)

Editor’s note: We are pleased to introduce our newest column, which will be contributed each month by a team member from Elmatica.

Knowledge and experience are the two key elements when planning a PCB. Today’s PCB designers must have far more knowledge and understanding of the PCB production process than in the past. This is especially important when they plan and how they plan the stackup, via span, routing and power distribution.

This article will focus on multilayer boards since these are the types of PCBs where we truly see the importance of planning in the day-today PCB life. On a double-sided board, you can of course use one layer as a ground plane, but critical traces are not easy to handle.

As a designer, you know your needs when it comes to signal integrity, electromagnetic interference (EMI) design and impedance requirements. The factors involved are:

  • Number of layers
  • Number of power and ground planes used
  • Sequence of layers
  • Space between the layers

To continue, we can say that:

  • Signal layers carrying critical signals,  should always be adjacent to a plane
  • Power and ground planes should be as close as possible for best capacitance
  • Power and ground planes can use other material with a higher Dk, for best possible capacitance
  • High-speed signals should be routed on innerlayers located between planes for  best possible shielding

Multiple groundings will lower the reference plane’s impedance, and reduce the common mode radiation from the high-speed signals. The lowest layer-count you need to achieve all of this is probably an 8-layer board (Figure 1).

However, these points can be very challenging. There might be a maximum thickness of the PCB that cannot be ignored; many plane layers will limit the number of signal layers. It can be difficult to get the wanted signal impedances, regarding distance between layers, track widths and gaps between tracks.

Signal integrity addresses the degradation of signal quality to the point where an error occurs. EMI focuses on the corresponding specifications, test requirements and interference between nearby equipment. For signal integrity, the key factor is to keep noise levels significantly below signal levels. Our noise margins are typical in the millivolt range for digital circuits, but for EMI, emission levels must be kept in the microvolt and microamp range.

Ground impedance is at the root of virtually all signal integrity and EMI problems. To keep a low ground impedance is mandatory for both EMI and signal integrity. This is achieved with a solid ground plane. In fact, the main problem with ground impedance is the discontinuities that occur in the signal path, and it has a major impact on characteristic impedance control.

Copper thickness is not an important factor. At high bit rates, the skin effect dominates so the signal is pushed to the copper surface, which means that additional copper thickness is irrelevant.

These days, with more and more HDI designs operating well up in the GHz frequencies, characteristic impedance control becomes more important, but also more challenging to maintain, since distances between layers are shrunk. HDI and microvias require less distance between layers, and the fact that more layers will be squeezed within a given PCB thickness.

To read the full version of this article which appeared in the October 2017 issue of The PCB Magazine, click here.

Share


Suggested Items

PCB Material Toolbox for Today's 3G & 4G Networks and Future High-Speed Needs in 5G

06/21/2018 | Stig Källman, ERICSSON with Happy Holden, I-CONNECT007
The material toolbox idea first came up when I saw the IPC appendix list for standard 1-ply stack-ups. The idea is to make a very simple bill of materials, specifications and notes, and possibly use the same prepreg/resin in the laminate and in the core.

The Institute of Circuit Technology Annual Symposium 2018

06/18/2018 | Pete Starkey, I-Connect007
ICT technical director Bill Wilkie is well-known for choosing notable venues for Institute of Circuit Technology events, and his choice for this year’s Annual Symposium was the National Motor Museum, located in the village of Beaulieu in the heart of the New Forest, a national park in the county of Hampshire in Southern England. The region is known for its heathland, forest trails and native ponies.

Experts Discussion with John Talbot, Tramonto Circuits

06/06/2018 | I-Connect007 Editorial Team
For this first issue of Flex007 Magazine, we interviewed John Talbot, president and owner of Tramonto Circuits. Headquartered in metro Minneapolis, Minnesota, Tramonto manufactures flexible and rigid PCBs for a variety of industry segments. Editors Andy Shaughnessy, Patty Goldman and Stephen Las Marias asked John to discuss the challenges and opportunities in the world of flexible circuits, and some of the trends he’s seeing in this market.



Copyright © 2018 I-Connect007. All rights reserved.