Simulating High Temperature Superconductors


Reading time ( words)

Superconductivity, the effortless transport of electric charge, has many potential technological applications. Unfortunately, most materials that show superconductive behavior only do so at very low temperatures. An international group of physicists, among which UvA-Institute of Physics researcher Philippe Corboz, has now made important progress in simulating unconventional materials which are superconducting at higher temperatures. Their results were published in Science this week.

One of the grand open problems in physics is understanding high-temperature superconductivity, which was discovered more than 30 years ago in so-called cuprates. Superconductive materials are substances that completely lose their electrical resistance below a certain transition temperature. Typically, these temperatures are close to the absolute zero of the temperature scale, 273 degrees Celsius below zero. In cuprates, however, this temperature is much higher. Understanding the mechanism behind this phenomenon is the key to design new materials with an even higher transition temperature - the ultimate dream would be room temperature - which would pave the way for groundbreaking technological applications.

Computational Advances

In early attempts to gain understanding on this issue, it was proposed that a very simple model of interacting electrons moving on a two-dimensional lattice - called the Hubbard model - could capture the relevant physics of high temperature superconductivity. Despite the simplicity of the Hubbard model, it has been one of the major challenges in computational physics to accurately simulate it on a computer, in order to determine what type of ordering of the electrons is realized. However, thanks to major advances in computational methods for quantum many-body systems, the solution of the Hubbard model has recently become within reach.

By combining the latest numerical methods in large-scale simulations, the researchers have now found a definite answer on the ordering, namely a so-called "stripe" state (see image) in which the electron density is not uniform, but modulated in space. Stripes had also been found in previous studies, but not with the required level of precision to distinguish them from solutions with uniform density. The new simulations qualitatively reproduce some of the main features of the stripes observed in the cuprates. At the same time, they show that for a quantitative agreement with real materials, more realistic models beyond the simplest Hubbard model are required.

Share


Suggested Items

Beyond Scaling: An Electronics Resurgence Initiative

06/05/2017 | DARPA
The Department of Defense’s proposed FY 2018 budget includes a $75 million allocation for DARPA in support of a new, public-private “electronics resurgence” initiative. The initiative seeks to undergird a new era of electronics in which advances in performance will be catalyzed not just by continued component miniaturization but also by radically new microsystem materials, designs, and architectures.

DARPA Researchers Develop Novel Method for Room-Temperature Atomic Layer Deposition

09/01/2016 | DARPA
DARPA-supported researchers have developed a new approach for synthesizing ultrathin materials at room temperature—a breakthrough over industrial approaches that have demanded temperatures of 800 degrees Celsius or more. T

Finessing Miniaturized Magnetics into the Microelectronics Mix

06/20/2016 | DARPA
A newly-announced DARPA program is betting that unprecedented on-chip integration of workhorse electronic components, such as transistors and capacitors, with less-familiar magnetic components with names like circulators and isolators, will open an expansive pathway to more capable electromagnetic systems.



Copyright © 2017 I-Connect007. All rights reserved.