New Microbial Fuel Cell Could Be Integrated Into Wearable Electronics


Reading time ( words)

A research team led by faculty at Binghamton University, State University of New York has developed an entirely textile-based, bacteria-powered bio-battery that could one day be integrated into wearable electronics.

The team, led by Binghamton University Electrical and Computer Science Assistant Professor Seokheun Choi, created an entirely textile-based biobattery that can produce maximum power similar to that produced by his previous paper-based microbial fuel cells.

Additionally, these textile-based biobatteries exhibit stable electricity-generating capability when tested under repeated stretching and twisting cycles.

Choi said that this stretchable, twistable power device could establish a standardized platform for textile-based biobatteries and will be potentially integrated into wearable electronics in the future.

"There is a clear and pressing need for flexible and stretchable electronics that can be easily integrated with a wide range of surroundings to collect real-time information," said Choi. "Those electronics must perform reliably even while intimately used on substrates with complex and curvilinear shapes, like moving body parts or organs. We considered a flexible, stretchable, miniaturized biobattery as a truly useful energy technology because of their sustainable, renewable and eco-friendly capabilities."

Compared to traditional batteries and other enzymatic fuel cells, microbial fuel cells can be the most suitable power source for wearable electronics because the whole microbial cells as a biocatalyst provide stable enzymatic reactions and a long lifetime, said Choi.

Sweat generated from the human body can be a potential fuel to support bacterial viability, providing the long-term operation of the microbial fuel cells.

"If we consider that humans possess more bacterial cells than human cells in their bodies, the direct use of bacterial cells as a power resource interdependently with the human body is conceivable for wearable electronics," said Choi.

This work was supported by the National Science Foundation, the Binghamton University Research Foundation and a Binghamton University ADL (Analytical and Diagnostics Laboratory) Small Grant.

Share


Suggested Items

Beyond Scaling: An Electronics Resurgence Initiative

06/05/2017 | DARPA
The Department of Defense’s proposed FY 2018 budget includes a $75 million allocation for DARPA in support of a new, public-private “electronics resurgence” initiative. The initiative seeks to undergird a new era of electronics in which advances in performance will be catalyzed not just by continued component miniaturization but also by radically new microsystem materials, designs, and architectures.

Today’s MilAero Options, Part 1: 'Pride Goeth Before...'

04/12/2016 | Marc Carter
Historians, with their 20/20 hindsight, often write about the inevitable decline and fall of kingdoms, empires, religions, organizations, governments, and all the other permanent structures we humans build.

Stretchable Inks: Changing the Wearables Market and the Landscape of Manufacturing

05/13/2015 | Barry Matties, I-Connect007
I-Connect007 Publisher Barry Matties and DuPont’s Steven Willoughby and Michael Burrows spoke recently and discussed new material for wearable electronics: stretchable inks. Wearable electronics is a fast growing sector of the electronics industry that is inspiring new and exciting products, as well as changing the requirements for becoming an electronics manufacturer.



Copyright © 2018 I-Connect007. All rights reserved.