Progress in Solar Technologies


Reading time ( words)

A workshop entitled "European Solar Technology Forum – from Research to Industrial Application" took place at HZB to conclude of the European CHEETAH project on November 30, 2017. More than 100 participants from the most important European research institutes in the field of photovoltaics and from numerous universities came together with representatives from industry in order to discuss the progress achieved by CHEETAH.

Three different types of soclar cells have been greatly improved:

Silicon photovoltaics: wafer thickness cut by half

Efforts in the field of silicon photovoltaics have been directed towards the use of ever-thinner wafers in manufacturing photovoltaic modules. Several modules whose cells were 90-100 microns thick were presented at the workshop. These enable considerable savings in materials compared to standard modules with cell thicknesses of 180 microns.

Reducing material consumption in chalcopyrite solar cells by implementing an integrated lens system.

The approach to saving materials in thin-film solar cells made of chalkopyrites (Cu(In,Ga)Se2) was different: the cells were reduced in area and an integrated lens system incorporated into the module to concentrate the sunlight irradiating the cells. The goal is to achieve an efficiency level at least as high as that of current commercial modules while using considerably less material. The first prototypes already demonstrate that the method works in principle and can even reach higher efficiency levels than standard cells under certain circumstances due to the higher light intensity.

Extending the operating life of hybrid solar cells

The third topic in CHEETAH involved organic and hybrid solar cells. In this part of the project, polymer encapsulation materials were measured in an extensive series of tests and correlated with the operating life of the cells. The operating life of these solar cells could be increased to several years using the best of these polymers.

Share


Suggested Items

Beyond Scaling: An Electronics Resurgence Initiative

06/05/2017 | DARPA
The Department of Defense’s proposed FY 2018 budget includes a $75 million allocation for DARPA in support of a new, public-private “electronics resurgence” initiative. The initiative seeks to undergird a new era of electronics in which advances in performance will be catalyzed not just by continued component miniaturization but also by radically new microsystem materials, designs, and architectures.

DARPA Researchers Develop Novel Method for Room-Temperature Atomic Layer Deposition

09/01/2016 | DARPA
DARPA-supported researchers have developed a new approach for synthesizing ultrathin materials at room temperature—a breakthrough over industrial approaches that have demanded temperatures of 800 degrees Celsius or more. T

Finessing Miniaturized Magnetics into the Microelectronics Mix

06/20/2016 | DARPA
A newly-announced DARPA program is betting that unprecedented on-chip integration of workhorse electronic components, such as transistors and capacitors, with less-familiar magnetic components with names like circulators and isolators, will open an expansive pathway to more capable electromagnetic systems.



Copyright © 2018 I-Connect007. All rights reserved.