Technique to Allow AI to Learn Words in the Flow of Dialogue Developed


Reading time ( words)

A group of researchers at Osaka University has developed a new method for dialogue systems(1). This new method, lexical acquisition through implicit confirmation, is a method for a computer to acquire the category of an unknown word over multiple dialogues by confirming whether or not its predictions are correct in the flow of conversation.

Figure 1. Example of implicit confirmation
1. Predict category of unknown word
2. Generate implicit confirmation request with category c
3. Determine if the category c is correct from user response

Many conversation robots, chatbots, and voice assistant apps have appeared in recent years; however, in these systems, computers basically answer questions based on what has been preprogrammed. There is another method in which a computer learns from humans by asking simple repetitive questions; however, if the computer asks only questions such as “What is xyz?” in order to acquire knowledge, users will lose interest in talking with the computer.

The group led by Professor Komatani developed an implicit confirmation method by which the computer acquires the category of an unknown word during conversation with humans. This method aims for the system to predict the category of an unknown word from user input during conversation, to make implicit confirmation requests to the user, and to have the user respond to these requests. In this way, the system acquires knowledge about words during dialogues.

In this method, the system decides whether the prediction is correct or not by using the user response following each request, its context, by using machine learning(2) techniques. In addition, this system’s decision performance improved by taking the classification results gained from dialogues with other users into consideration.

Chatbots in the market speak to anyone in the same manner. However, as dialogue systems become popular in the future, computers will be required to speak by learning from a conversational partner according to the situation. This group’s research results are a new approach towards the realization of dialogue systems in which a computer can become smarter through conversation with humans and will lead to the development of dialogue systems with the ability to customize responses to the user’s situation.

This research project was conducted as a part of joint research with Honda Research Institute Japan Co., Ltd.

 

 

(1) Dialogue system
A dialogue system (or conversational system), a part of artificial intelligence, is a computer system intended to converse with a human in natural language. Many speech-enabled IVR (interactive voice response) applications, humanoid robots, and text-based chatbots have been developed in recent years.
(2) Machine learning (AI)
Machine Learning is a method using algorithms to analyze data, learn from it, and then make a determination or prediction. Machine learning includes supervised learning, unsupervised learning, and reinforcement learning. In supervised learning, the computer is trained with a set of examples (dataset) that contains the correct answer; through which it becomes able to make judgements in different situations.

 

(1) Dialogue system

A dialogue system (or conversational system), a part of artificial intelligence, is a computer system intended to converse with a human in natural language. Many speech-enabled IVR (interactive voice response) applications, humanoid robots, and text-based chatbots have been developed in recent years.

(2) Machine learning (AI)

Machine Learning is a method using algorithms to analyze data, learn from it, and then make a determination or prediction. Machine learning includes supervised learning, unsupervised learning, and reinforcement learning. In supervised learning, the computer is trained with a set of examples (dataset) that contains the correct answer; through which it becomes able to make judgements in different situations.

Share


Suggested Items

Researchers Selected to Develop Novel Approaches to Lifelong Machine Learning

05/07/2018 | DARPA
Machine learning (ML) and artificial intelligence (AI) systems have significantly advanced in recent years. However, they are currently limited to executing only those tasks they are specifically designed to perform and are unable to adapt when encountering situations outside their programming or training.

DARPA's Assured Autonomy Program Seeks to Guarantee Safety of Learning-enabled Autonomous Systems

08/17/2017 | DARPA
Building on recent breakthroughs in autonomous cyber systems and formal methods, DARPA today announced a new research program called Assured Autonomy that aims to advance the ways computing systems can learn and evolve to better manage variations in the environment and enhance the predictability of autonomous systems like driverless vehicles and unmanned aerial vehicles (UAVs).

Enabling Extreme New Designs for Optics and Imagers

08/22/2016 | DARPA
DARPA seeks engineered optical materials unconstrained by “laws” of classical optics to develop vastly smaller, lighter, and more capable devices for advanced imaging applications.



Copyright © 2018 I-Connect007. All rights reserved.