Atomically Thin Perovskites Boost for Future Electronics

Reading time ( words)

WPI-MANA has developed the world's highest performance dielectric nanofilms using atomically thin perovskites (JACS, "Atomic Layer Engineering of High-κ Ferroelectricity in 2D Perovskites"). This technology may revolutionize the next-generation of electronics.

Image caption: Complex perovskite oxides offer tremendous potential for controlling their rich variety of electronic properties, including high-TC superconductivity, high-κ ferroelectricity, and quantum magnetism. Atomic-scale control of these intriguing properties in ultrathin perovskites is an important challenge for exploring new physics and device functionality at atomic dimensions. (ACS)

This research was conducted by a WPI-MANA research group led by Principal Investigator Minoru Osada and Director Takayoshi Sasaki of WPI-MANA at NIMS. Electronic devices are getting smaller all the time, but there is a limit to how small they can get using current materials and technology. High-κ dielectric materials may be the key for developing electronic devices of the future.

Minoru Osada and colleagues created high-performance dielectric nanofilms using 2D perovskite nanosheets (Ca2Nam-3NbmO3m+1; m = 3–6) as building blocks. Perovskite oxides offer tremendous potential for controlling their rich variety of electronic properties including high-κ dielectric and ferroelectric.

The researchers demonstrated the targeted synthesis of nanofilms composed of 2D perovskite nanosheets in a unit-cell-upon-unit-cell manner. In this unique system, perovskite nanosheets enable precise control over the thickness of the perovskite layers in increments of ∼0.4 nm (one perovskite unit) by changing m, and such atomic layer engineering enhances the high-κ dielectric response and local ferroelectric instability. The m = 6 member (Ca2Na3Nb6O19) attained the highest dielectric constant, εr = ∼470, ever realized in all known dielectrics in the ultrathin region of less than 10 nm.

Perovskite nanosheets are of technological importance for exploring high-κ dielectrics in 2D materials, which have great potential in electronic applications such as memories, capacitors, and gate devices.

Notably, perovskite nanosheets afforded high capacitances by relying on high-κ values at a molecular thickness. Ca2Na3Nb6O19 exhibited an unprecedented capacitance density of approximately 203 µF cm-2, which is about three orders of magnitude greater than that of currently available ceramic condensers, opening a route to ultra-scaled high-density capacitors.

These results provide a strategy for achieving 2D high-κ dielectrics/ferroelectrics for use in ultra-scaled electronics and post-graphene technology.


Suggested Items

Mining Everyday Technologies to Anticipate Possibilities

03/14/2016 | DARPA
For decades, U.S. national security was ensured in large part by a simple advantage: a near-monopoly on access to the most advanced technologies. Increasingly, however, off-the-shelf equipment developed for the transportation, construction, agricultural and other commercial sectors features highly sophisticated components, which resourceful adversaries can modify or combine to create novel and unanticipated security threats.

Copyright © 2018 I-Connect007. All rights reserved.