Marine Exploration Sensing With Light and Sound

Reading time ( words)

Oceanic sensor networks that collect and transmit high-quality, real-time data could transform our understanding of marine ecology, improve pollution and disaster management, and inform the multiple industries that draw on ocean resources. A KAUST research team is designing and optimizing underwater wireless sensor networks that could vastly improve existing ocean sensing equipment.

“Currently, underwater sensors use acoustic waves to communicate data,” explains Nasir Saeed, who is working on a new hybrid optical-acoustic sensor design with colleagues Abdulkadir Celik, Mohamed Slim Alouini and Tareq Al-Naffouri. “However, while acoustic communication works over long distances, it can only transmit limited amounts of data with long delays. Recent research has also shown that noise created by humans in the oceans adversely affects marine life. We need to develop alternative, energy-efficient sensors that limit noise pollution while generating high-quality data.”

One option is to use optical communication technology instead, but light waves will only travel short distances underwater before they are absorbed. Optical sensors also rely heavily on pointing and tracking mechanisms to ensure they are correctly orientated to send and receive signals. The team therefore propose a hybrid sensor capable of transmitting both acoustic and optical signals simultaneously. In this way, a data-collection buoy on the water surface can communicate with every sensor in a network spread out beneath it.

However, marine research requires accurate measurements taken from precise locations, so scientists need to know where every sensor is at any given time. The team used mathematical modeling to develop a proof-of-concept localization technique.

“Using our technique, the sensors transmit their received signal strength information (RSSI) to the surface buoy,” says Saeed. “For a large communication distance, the sensors use acoustic signals, but if the sensor is within close range of another sensor, it will send an optical signal instead.”

Multiple RSSI measurements for each sensor are collected by the surface buoy. The buoy then weights these measurements to give preference to the most accurate readings before calculating where each sensor is positioned.

Alouini's and Al-Naffouri's teams propose that their sensors will require a new energy source rather than relying on short-term battery power. They envisage an energy-harvesting system that powers fuel cells using microscopic algae or piezoelectric (mechanical stress) energy. 


Suggested Items

Graphene Device Could Substantially Increase the Energy Efficiency of Fossil Fuel-powered Cars

06/02/2016 | University of Manchester
A graphene-based electrical nano-device has been created which could substantially increase the energy efficiency of fossil fuel-powered cars.

Global LED Market Expected to Record a CAGR of close to 17% until 2020

05/26/2016 | Business Wire
This research report titled ‘Global LED Market 2016-2020’ provides an in-depth analysis of market growth in terms of revenue and emerging market trends. The market size is calculated on the basis of revenue generated from four segments, including general lighting, backlighting, automotive lighting, and others.

The Real Martian Spinoffs Part 3: Harnessing the Power

10/15/2015 | NASA
It will be the most powerful rocket ever built. More powerful than the mighty Saturn V that took humans to the moon, the Space Launch System (SLS), NASA’s newest rocket currently under development, will have the capability to send astronauts deeper into space than ever before. With SLS and the Orion capsule, humans will no longer have to dream of walking on Mars: They finally will do it.

Copyright © 2018 I-Connect007. All rights reserved.