New Research Shows How Paper-Cutting Can Make Ultra Strong, Stretchable Electronics


Reading time ( words)

Like a yoga novice, electronic components don’t stretch easily. But that’s changing thanks to a variation of origami that involves cutting folded pieces of paper. 

In a study published April 2 in the journal Advanced Materials, a University at Buffalo-led research team describes how kirigami has inspired its efforts to build malleable electronic circuits. 

Their innovation — creating tiny sheets of strong yet bendable electronic materials made of select polymers and nanowires — could lead to improvements in smart clothing, electronic skin and other applications that require pliable circuitry. 

“Traditional electronics, like the printed circuit boards in tablets and other electronic devices, are rigid. That’s not a good match for the human body, which is full of bends and curves, especially when we are moving, says lead author Shenqiang Ren, professor in the Department of Mechanical and Aerospace Engineering. 

“We examined the design principles behind kirigami, which is an efficient and beautiful art form, and applied them to our work to develop a much stronger and stretchable conductor of power,” says Ren, also a member of UB’s RENEW Institute, which is dedicated to solving complex environmental problems. 

The study, which includes computational modeling contributions from Temple University researchers, employs nanoconfinement engineering and strain engineering (a strategy in semiconductor manufacturing used to boost device performance). 

Without kirigami, the polymerknown as PthTFBcan be deformed up to 6% from its original shape without changing its electronic conductivity. With kirigami, the polymer can stretch up to 2,000%. Also, the conductivity of PthTFB with kirigami increases by three orders of magnitude.

The advancement has many potential applications, including electronic skin (thin electronic material that mimics human skin, often used in robotic and health applications), bendable display screens and electronic paper. But its most useful application could be in smart clothing, a market that analysts says could reach $4 billion by 2024. 

The research was supported the U.S. Department of Energy.

Share


Suggested Items

What’s Coming in 3D Printing Technology in 2018

12/27/2017 | Cullen Hilkene, 3Diligent
First, the arrival of extrusion metal printing. Today's extrusion printers are the most prevalent and, arguably, user-friendly 3D Printers in the market. Now, after years of there being zero metal extrusion printers, there will be two in the new year from Desktop Metal and Markforged. These technologies promise new materials and a higher degree of user friendliness for metal printing.

DARPA, Santa Continue HO HO HO-liday Team-Up

12/26/2017 | DARPA
DARPA’s High-speed Optimized Handling of Holiday Operations (HO HO HO) initiative is celebrating its fourth anniversary this year, and the Agency is proud to continue its tradition of sharing breakthrough technologies to help Santa Claus and his elves more quickly and efficiently complete their holiday duties.

International Partners Provide Science Satellites for America’s Space Launch System Maiden Flight

05/30/2016 | NASA
NASA’s new Space Launch System (SLS) will launch America into a new era of exploration to destinations beyond Earth’s orbit. On its first flight, NASA will demonstrate the rocket’s heavy-lift capability and send an uncrewed Orion spacecraft into deep space.



Copyright © 2018 I-Connect007. All rights reserved.