Porous Materials Make it Possible to Have Nanotechnology Under Control


Reading time ( words)

Half metal, half organic structure, like Robocop himself, is the material known as MOF, short for Metal Organic Framework. MOF has been developed by scientists and applied to a myriad of products from sorbents to batteries for electronic devices. This material emerged from the nanotechnology revolution that turned material design upside down and facilitated the improvement of chemical processes. MOFs are a new organic and inorganic hybrid material made up of metallic nodes and organic links characterized by their porosity, that is to say, by the intermolecular spaces that it is comprised of.

The study and understanding of its properties and applicability have centered on recent work by Professor Rafael Luque, of the University of Cordoba Organic Chemistry Department research group FQM-383, and a Southern China Technology University research group, published in Dalton Transactions. The research has proven that in addition to the ability to be used in catalysis processes - by means of which the speed of a chemical reaction is increased - these materials are built as stabilizers of metallic nanostructures. So, it paves the way for working with these kinds of nanoentities, thanks to the control over their stability.

The range of possibilities detailed in Luque's work depend on the encapsulated metal/metallic structure, which could be used for CO2 absorption or steam absorption when working with fuel cells and other kinds of batteries.

The methodology designed by Rafael Luque and his team is considered innovative because it enables control over material design to degrees that were unthinkable before. Previously, these porous materials that can accommodate nanoparticles have been studied, but never before has anyone specified the exact way to thoroughly control all the parameters and make them so pliable.

Diversifying the use of these metal-organic materials as much as possible to take advantage of the stability and pliability that they give to nanostructures will be the main focus for this research group henceforth. This line of research will be described in developing studies that are currently being performed by University of Cordoba research group FQM-383.

Share


Suggested Items

Beyond Scaling: An Electronics Resurgence Initiative

06/05/2017 | DARPA
The Department of Defense’s proposed FY 2018 budget includes a $75 million allocation for DARPA in support of a new, public-private “electronics resurgence” initiative. The initiative seeks to undergird a new era of electronics in which advances in performance will be catalyzed not just by continued component miniaturization but also by radically new microsystem materials, designs, and architectures.

DARPA Researchers Develop Novel Method for Room-Temperature Atomic Layer Deposition

09/01/2016 | DARPA
DARPA-supported researchers have developed a new approach for synthesizing ultrathin materials at room temperature—a breakthrough over industrial approaches that have demanded temperatures of 800 degrees Celsius or more. T

Finessing Miniaturized Magnetics into the Microelectronics Mix

06/20/2016 | DARPA
A newly-announced DARPA program is betting that unprecedented on-chip integration of workhorse electronic components, such as transistors and capacitors, with less-familiar magnetic components with names like circulators and isolators, will open an expansive pathway to more capable electromagnetic systems.



Copyright © 2018 I-Connect007. All rights reserved.