Silicon-based Tandem Photovoltaic Modules Can Compete in Solar Market


Reading time ( words)

New solar energy research from Arizona State University demonstrates that silicon-based tandem photovoltaic modules, which convert sunlight to electricity with higher efficiency than present modules, will become increasingly attractive in the U.S.

A paper that explores the costs vs. enhanced efficiency of this new solar technology appears in Nature Energy this week. The paper is authored by ASU Ira A. Fulton Schools of Engineering Assistant Research Professor Zhengshan J. Yu, graduate student Joe V. Carpenter and Assistant Professor Zachary Holman. ASU Professor Zhengshan Yu addresses how current solar tell technologies are reaching the limits of efficiency. ASU Assistant Research Professor Zhengshan Yu addresses how current solar cell technologies are reaching the limits of efficiency. Photo courtesy of ASU Holman Lab Download Full Image

The Department of Energy’s SunShot Initiative was launched in 2011 with a goal of making solar cost-competitive with conventional energy sources by 2020. The program attained its goal of $0.06 per kilowatt-hour three years early, and a new target of $0.03 per kilowatt-hour by 2030 has been set. Increasing the efficiency of photovoltaic modules is one route to reducing the cost of the solar electricity to this new target. If reached, the goal is expected to triple the amount of solar installed in the U.S. in 2030 compared to the business-as-usual scenario.

But according to Holman, “the dominant existing technology — silicon — is more than 90 percent of the way to its theoretical efficiency limit,” precipitating a need to explore new technologies. More efficient technologies will undoubtedly be more expensive, however, which prompted the paper co-authors to ask, “Does a doubling of module efficiency warrant a doubling of cost?”

Tandem modules stack two, complementary photovoltaic materials — for instance, a perovskite solar cell atop a silicon solar cell — to best use the full spectrum of colors emitted by the sun and exceed the efficiency of either constituent solar cell on its own. The study was designed to determine how much more expensive high-efficiency tandem photovoltaic modules can be and still compete in the evolving solar marketplace.

zacharyholmanreflects.jpg

ASU Assistant Professor Zachary Holman reflects on the efficiency of new solar technologies vs. the costs. Photo by Deanna Dent/ASU Now

Results indicate that in the expected 2020 U.S. residential solar market, 32-percent-efficient anticipated tandem modules can cost more than three times that of projected 22-percent-efficient silicon modules and still produce electricity at the same cost. This premium, however, is a best-case scenario that assumes the energy yield, degradation rate, service life and financing terms of tandem modules are similar to those of silicon modules alone. The study also acknowledges that cost premium values will vary according to region.

“Our previous study defines the technological landscape of tandems; this study paints the economic landscape for these future solar technologies that are only now being created in labs,” Yu said. “It tells researchers how much money they’re allowed to spend in realizing the efficiency enhancements expected from tandems.”

Holman’s research group is a leader in silicon-based tandem photovoltaic technologies, having held the efficiency world record in collaboration with Stanford University for a perovskite/silicon tandem solar cell until last month. As the team strives to reclaim the record while sticking to inexpensive materials and simple processes, it now knows that its innovations will likely find their way to a U.S. rooftop.

Share


Suggested Items

Ocean of Things Aims to Expand Maritime Awareness across Open Seas

12/12/2017 | DARPA
The internet of things connects an ever-growing number of smart devices for up-to-the-minute monitoring and tracking of many common events. Head out to most parts of the open ocean, however, and no such capability exists for real-time monitoring of maritime activity.

Today’s MilAero Options: Outsourcing—‘Everybody’s Doing it’ Not so True Today

06/27/2016 | Marc Carter
There was a time, not so many decades ago, when that most commonly-stated mantra (“lower labor costs”) behind offshoring printed circuit fab (and some assembly) operations, still had some case-by-case validity.

How a NASA Team Turned a Smartphone into a Satellite Business

02/19/2016 | NASA
Satellites aren’t small or cheap. The Solar Dynamics Observatory launched by NASA in 2010 weighs about 6,800 pounds and cost $850 million to build and put into orbit. Even the satellites built under NASA’s Discovery Program, aimed at encouraging development of low-cost spacecraft, still have price tags beyond the reach of smaller companies or research organizations.



Copyright © 2018 I-Connect007. All rights reserved.