Yale Researchers 'Teleport’ a Quantum Gate


Reading time ( words)

Yale University researchers have demonstrated one of the key steps in building the architecture for modular quantum computers: the “teleportation” of a quantum gate between two qubits, on demand.

teleport.jpg

The key principle behind this new work is quantum teleportation, a unique feature of quantum mechanics that has previously been used to transmit unknown quantum states between two parties without physically sending the state itself. Using a theoretical protocol developed in the 1990s, Yale researchers experimentally demonstrated a quantum operation, or “gate,” without relying on any direct interaction. Such gates are necessary for quantum computation that relies on networks of separate quantum systems — an architecture that many researchers say can offset the errors that are inherent in quantum computing processors.

Through the Yale Quantum Institute, a Yale research team led by principal investigator Robert Schoelkopf and former graduate student Kevin Chou is investigating a modular approach to quantum computing. Modularity, which is found in everything from the organization of a biological cell to the network of engines in the latest SpaceX rocket, has proved to be a powerful strategy for building large, complex systems, the researchers say. A quantum modular architecture consists of a collection of modules that function as small quantum processors connected into a larger network.

Modules in this architecture have a natural isolation from each other, which reduces unwanted interactions through the larger system. Yet this isolation also makes performing operations between modules a distinct challenge, according to the researchers. Teleported gates are a way to implement inter-module operations.

“Our work is the first time that this protocol has been demonstrated where the classical communication occurs in real-time, allowing us to implement a ‘deterministic’ operation that performs the desired operation every time,” Chou said.

Fully useful quantum computers have the potential to reach computation speeds that are orders of magnitude faster than today’s supercomputers. Yale researchers are at the forefront of efforts to develop the first fully useful quantum computers and have done pioneering work in quantum computing with superconducting circuits.

Quantum calculations are done via delicate bits of data called qubits, which are prone to errors. In experimental quantum systems, “logical” qubits are monitored by “ancillary” qubits in order to detect and correct errors immediately. “Our experiment is also the first demonstration of a two-qubit operation between logical qubits,” Schoelkopf said. “It is a milestone toward quantum information processing using error-correctable qubits.”

Co-authors of the study are current and former Yale graduate students Jacob Blumoff, Christopher Wang, Philip Reinhold, Christopher Axline, and Yvonne Gao; senior research scientist Luigi Frunzio; and professors Michel Devoret and Liang Jiang.

The Army Research Office and the Office for Naval Research supported the work.

Share


Suggested Items

DARPA Program Aims to Extend Lifetime of Quantum Systems

01/19/2018 | DARPA
Whether it is excited electrons emitting photons in a lightbulb or the vibrational frequency of atoms in an atomic clock, quantum phenomena are simultaneously fundamental aspects of nature and the basis of current state-of-the-art and future technologies.

DARPA’s Drive to Keep the Microelectronics Revolution at Full Speed Builds Its Own Momentum

08/28/2017 | DARPA
To perpetuate the pace of innovation and progress in microelectronics technology over the past half-century, it will take an enormous village rife with innovators. This week, about 100 of those innovators throughout the broader technology ecosystem, including participants from the military, commercial, and academic sectors, gathered at DARPA headquarters at the kickoff meeting for the Agency’s new CHIPS program, known in long form as the Common Heterogeneous Integration and Intellectual Property (IP) Reuse Strategies program.

Beyond Scaling: An Electronics Resurgence Initiative

06/05/2017 | DARPA
The Department of Defense’s proposed FY 2018 budget includes a $75 million allocation for DARPA in support of a new, public-private “electronics resurgence” initiative. The initiative seeks to undergird a new era of electronics in which advances in performance will be catalyzed not just by continued component miniaturization but also by radically new microsystem materials, designs, and architectures.



Copyright © 2018 I-Connect007. All rights reserved.