Chemistry Professor's Research Shocking the Battery Field

Reading time ( words)

Every year, Apple unveils a new iPhone complete with a longer-lasting battery.

In the newest model, Apple touts the battery in the iPhone XS Max lasts up to 1.5 hours longer than the iPhone X, which debuted less than a year ago. It’s easy to take for granted how quickly battery technology improves.

At night, people across the world plug in their iPhones and other smartphones before nodding off to sleep. Most assume the battery will be at 100 percent in the morning, ready for another day of texting and streaming. People who have electric vehicles may charge their batteries in the same manner at home or at work.

Implicit in these routines are the assumption that these sleeker, better-performing batteries will operate safely and without overheating. That myth was busted in 2016 when reports surfaced of the Samsung Galaxy Note 7 catching fire. There were also cases where electric vehicles caught fire or even exploded due to battery failures.

The question for battery researchers is: How can they develop higher performing and smaller batteries while maintaining high safety standards? In order to generate more power, batteries generally have to heat up more, which potentially leads to those battery failures. Batteries play a key role in our gadget-filled society, and our reliance on them will only increase as society shifts to more renewable energy sources.

One Virginia Tech chemistry professor and his lab are tackling these challenges. Feng Lin, an assistant professor in the College of Science, has had a productive year with over 10 published papers on battery research in 2018. Lin’s work covers the gamut of chemistry and materials science battery research, looking at micro-scale and basic science aspects, as well as macro-scale and applied science.


Two of Lin's graduate students, Xiaona Pan (front) and David Kautz, work in the glovebox in the lab.



Suggested Items

Army Researchers Explore Benefits of Immersive Technology for Soldiers

01/18/2019 | ARL
The emergence of next generation virtual and augmented reality devices like the Oculus Rift and Microsoft HoloLens has increased interest in using mixed reality to simulate training, enhance command and control, and improve the effectiveness of warfighters on the battlefield.

Flights Show Promising Technologies from Industry and Academic Partnerships

02/06/2018 | NASA
The technologies ranged from proposed new space suits to cryogenic propellant research, with implications for future NASA space missions as well as other research efforts.

DARPA's Hallmark Seeks to Revolutionize U.S. Space Enterprise Command and Control

01/11/2018 | DARPA
The growing complexity of space operations coupled with an increased need for timely decisions demands innovative approaches to battle management command and control (BMC2) technologies.

Copyright © 2019 I-Connect007. All rights reserved.