Sensing Disturbances in the Force

Reading time ( words)

It will be a feat of engineering and physics at the smallest scales, but it could open the biggest doors — to new science and more advanced technologies. UC Santa Barbara physicists Ania Jayich and David Weld, and materials scientist Kunal Mukherjee, are teaming up to build an atom-defect hybrid quantum system — a sensor technology that would use the power of quantum science to unlock the mysteries of the atomic and subatomic world.

“We’re at this tipping point where we know there’s a lot of impactful and fundamentally exciting things we can do,” said Jayich, whose research investigates quantum effects at the nanoscale. The $1.5 million grant from the Department of Energy’s Office of Basic Sciences will kickstart the development of a system that will allow researchers an unusually high level of control over atoms while simultaneously leaving their “quantumness” untouched.

“In this whole field of quantum technology, that has been the big challenge,” Jayich said. In the quirky and highly unintuitive world of quantum mechanics, she explained, objects can exist in a superposition of many places at once, and entangled elements separated by thousands of miles can be inextricably linked — phenomena which, in turn, have opened up new and powerful possibilities for areas such as sensing, computing and the deepest investigations of nature.

However, the coherence that is the signature of these quantum behaviors — a state of information that is the foundation of quantum technology — is exceedingly fragile and fleeting.

“Quantum coherence is such a delicate phenomenon,” Jayich said. “Any uncontrolled interaction with the environment will kill it. And that’s the whole challenge behind advancing this field — how do we preserve the very delicate quantumness of an atom or defect, or anything?” To study a quantum element such as an atom, one would have to interrogate it, she explained, but the act of measuring can also destroy its quantum nature.

To Hold Without Touching

Fortunately, Jayich and colleagues see a way around this conundrum.

“It’s a hybrid atomic- and solid-state system,” Jayich said. Key to this technology is the nitrogen-vacancy (NV) center in diamond, an extensively studied point defect in diamond’s carbon atom lattice. The NV center is comprised of a vacancy created by a missing carbon atom next to another vacancy that is substituted with a nitrogen atom. With its several unpaired electrons, it is highly sensitive to and interactive with external perturbations, such as the minute magnetic or electric fields that would occur in the presence of individual atoms of interest.

“In the proposed experiment, we would have an atom on the diamond surface that couples to a shallow, subsurface NV center inside the material, in a highly controlled, cryogenic and ultra-high vacuum environment,” Jayich explained. The diamond surface provides a natural trapping that allows researchers to more easily hold the atom in place — a challenge for many quantum scientists who want to trap individual atoms. Further, upon reading the state of the defect, one could understand the quantum properties of the atom under interrogation — without touching the atom itself and destroying its coherence.

Previous methods aimed at interrogating individual adatoms (adsorbed atoms) relied on passing current through the atoms and necessitated metal surfaces, both of which, according to Jayich, reduce quantum coherence times.

“The past several decades of work in atomic physics have resulted in tools that allow exquisite quantum control of all degrees of freedom of atomic ensembles, but typically only when the atoms are gently held in a vacuum far away from all other matter,” added Weld. “This experiment seeks to extend this level of control into a much messier but also much more technologically relevant regime, by manipulating and sensing individual atoms that are chemically bonded to a solid surface.”

With the hybrid system, Jayich said, it would be “very easy to talk to the NV center defect with light, and the atoms have the benefit of retaining quantum information for very long periods of time. So we have a system where we leverage the best of both worlds — the best of the atom and the best of the defect — and put them together in a way that’s functional.”



Suggested Items

DARPA Tests Advanced Chemical Sensors

05/03/2019 | DARPA
DARPA’s SIGMA program, which began in 2014, has demonstrated a city-scale capability for detecting radiological and nuclear threats that is now being operationally deployed.

Researchers Selected to Develop Novel Approaches to Lifelong Machine Learning

05/07/2018 | DARPA
Machine learning (ML) and artificial intelligence (AI) systems have significantly advanced in recent years. However, they are currently limited to executing only those tasks they are specifically designed to perform and are unable to adapt when encountering situations outside their programming or training.

DARPA's Assured Autonomy Program Seeks to Guarantee Safety of Learning-enabled Autonomous Systems

08/17/2017 | DARPA
Building on recent breakthroughs in autonomous cyber systems and formal methods, DARPA today announced a new research program called Assured Autonomy that aims to advance the ways computing systems can learn and evolve to better manage variations in the environment and enhance the predictability of autonomous systems like driverless vehicles and unmanned aerial vehicles (UAVs).

Copyright © 2019 I-Connect007. All rights reserved.