Device That 'Shakes' Light a Breakthrough in Photonics


Reading time ( words)

—The ability to control light with electronics is a critical part of advanced photonics, a field with applications that include telecommunications and precision time-keeping. But the limits of available optical materials have stymied efforts to achieve greater efficiency. 

Researchers at Yale, though, have developed a device that combines mechanical vibration and optical fields to better control light particles. The device has demonstrated an efficient on-chip shaping of photons enabled by nanomechanics driven at microwave frequencies. Led by Hong Tang, the Llewellyn West Jones, Jr. Professor of Electrical Engineering, Applied Physics & Physics, the results of their work are published today in Nature Photonics.

Currently, the most common technique for manipulating photon frequency is with what’s known as nonlinear optical effects, in which a strong laser essentially acts as a pump, controlling the color and pulse shape of a signal photon by providing extra photons to mix with the original one. The effect is weak, though, so the process requires a very strong laser, which creates “noise"—the loss of certain quantum properties. 

To break beyond these limits, the Yale researchers have created a device that consists of a series of waveguides—structures through which microwaves are directed. Light and microwave are sent through the device, and the light wends its way through alternating suspended and clamped waveguides on a single chip. This creates a positive and negative effect, corresponding to the microwave, which always has a positive and a negative component. The light spirals in each of the waveguides to prolong the interaction and maximize efficiency. 

“The deeper the modulation, the better,” Tang said, "and you can have better control of the photon.”

Mechanical vibrations modulate the optical phase in each suspended waveguide spiral. The mechanical vibrations essentially ‘shake’ the photons, dispersing them as if they were grains of sand. This accumulates to generate what’s known as deep phase modulation. 

Previously, the Tang lab had created a single waveguide device. With this new device, the alternating positive and negative waveguides dramatically boost efficiency. 

Other contributors to the paper include lead author Linran Fan, Chang-Ling Zou, and Na Zhu.

Share

Print


Suggested Items

DARPA Program Aims to Extend Lifetime of Quantum Systems

01/19/2018 | DARPA
Whether it is excited electrons emitting photons in a lightbulb or the vibrational frequency of atoms in an atomic clock, quantum phenomena are simultaneously fundamental aspects of nature and the basis of current state-of-the-art and future technologies.

DARPA’s Drive to Keep the Microelectronics Revolution at Full Speed Builds Its Own Momentum

08/28/2017 | DARPA
To perpetuate the pace of innovation and progress in microelectronics technology over the past half-century, it will take an enormous village rife with innovators. This week, about 100 of those innovators throughout the broader technology ecosystem, including participants from the military, commercial, and academic sectors, gathered at DARPA headquarters at the kickoff meeting for the Agency’s new CHIPS program, known in long form as the Common Heterogeneous Integration and Intellectual Property (IP) Reuse Strategies program.

Beyond Scaling: An Electronics Resurgence Initiative

06/05/2017 | DARPA
The Department of Defense’s proposed FY 2018 budget includes a $75 million allocation for DARPA in support of a new, public-private “electronics resurgence” initiative. The initiative seeks to undergird a new era of electronics in which advances in performance will be catalyzed not just by continued component miniaturization but also by radically new microsystem materials, designs, and architectures.



Copyright © 2019 I-Connect007. All rights reserved.