A Robotic Leg, Born Without Prior Knowledge, Learns to Walk


Reading time ( words)

Through this process of discovering their body and environment, the robot limbs designed at Valero-Cuevas’ lab at USC use their unique experience to develop the gait pattern that works well enough for them, producing robots with personalized movements. “You can recognize someone coming down the hall because they have a particular footfall,” Valero-Cuevas said. “Our robot uses its limited experience to find a solution to a problem that then becomes its personalized habit, or ‘personality’—We get the dainty walker, the lazy walker, the champ… you name it.”

The potential applications for the technology are many, particularly in assistive technology, where robotic limbs and exoskeletons that are intuitive and responsive to a user’s personal needs would be invaluable to those who have lost the use of their limbs. “Exoskeletons or assistive devices will need to naturally interpret your movements to accommodate what you need,” Valero-Cuevas said.

“Because our robots can learn habits, they can learn your habits, and mimic your movement style for the tasks you need in everyday life—even as you learn a new task, or grow stronger or weaker.”

According to the authors, the research will also have strong applications in the fields of space exploration and rescue missions, allowing for robots that do what needs to be done without being escorted or supervised as they venture into a new planet, or uncertain and dangerous terrain in the wake of natural disasters. These robots would be able to adapt to low or high gravity, loose rocks one day and mud after it rains, for example.

The paper’s two additional authors, doctoral students Brian Cohn and Darío Urbina-Meléndez weighed in on the research:

“The ability for a species to learn and adapt their movements as their bodies and environments change has been a powerful driver of evolution from the start,” said Cohn, a doctoral candidate in computer science at the USC Viterbi School of Engineering. “Our work constitutes a step towards empowering robots to learn and adapt from each experience, just as animals do.”

“I envision muscle-driven robots, capable of mastering what an animal takes months to learn, in just a few minutes,” said Urbina-Meléndez, a doctoral candidate in biomedical engineering who believes in the capacity for robotics to take bold inspiration from life. “Our work combining engineering, AI, anatomy and neuroscience is a strong indication that this is possible.”

Share

Print


Suggested Items

What It Takes to Be a Milaero Supplier, Part 2

03/24/2020 | Anaya Vardya, American Standard Circuits
The decision to pursue military and aerospace (milaero) certification impacts every facet of the organization, and not every shop is prepared to make this transformation. In Part 2, Anaya Vardya focuses on what it takes to be a milaero supplier in the areas of engineering and CAM.

Requirements of Being a MIL-certified Shop

11/12/2019 | Barry Matties, I-Connect007
Barry Matties speaks with American Standard Circuits’ VP of Business Development David Lackey, who has nearly 40 years of experience producing PCBs for the mil/aero market. David talks about what it’s like being a MIL-certified shop and the stringent quality and reporting requirements that it entails.

Small Eye in the Sky: Special Forces Will Soon Have New Enduring ISR Option

04/29/2019 | Lockheed Martin
Combating counterinsurgency, conducting reconnaissance, collecting information vital to national security, United States Special Forces conduct some of the most sensitive and critical missions.



Copyright © 2020 I-Connect007. All rights reserved.