Wearable Device Quantifies Tissue Stiffness While Preserving Surgeon’s Sense of Touch


Reading time ( words)

finger2.jpgImage Caption: To use the device, the finger-mounted probe is placed perpendicular to the body and pressed on the tissue while OCT images are recorded. The researchers want to incorporate the sensor into a surgical glove that would preserve touch sensitivity. Credit: Rowan W. Sanderson, University of Western Australia

Tissue Tests

To validate the probe, they began by testing it on materials, known as silicone phantoms, designed to mimic healthy and diseased tissues in the breast. These tests showed that the finger-mounted probe had an accuracy of 87%, which was slightly lower than a conventional benchtop QME system, but still sufficiently high for potential clinical use.

They then used the probe to measure the change in stiffness caused by heating a sample of kangaroo muscle. This experiment showed the muscle sample underwent a 6-fold increase in stiffness following the heating process. A preliminary 2D image was obtained by scanning the probe laterally across a silicone phantom containing a stiff inclusion. Although it showed lower accuracy than the experiment performed without scanning, the researchers say that the prospect for imaging by swiping the operator’s finger is very encouraging. “The contrast between sample features was still evident, which indicates that 2D scanning holds a lot of promise going forward,” said Sanderson.

The researchers are now working to embed the optical components of the probe into a surgical glove that would preserve the touch sensitivity and dexterity of manual palpation. They are also improving the accuracy of the 2D scanning.

This work forms part of a broader project to develop novel tools to improve surgery. The research team has also developed both bench-top and handheld implementations of micro-elastography. In addition to efforts within the University, the team also works closely with OncoRes Medical, a UWA start-up company formed in late 2016 to commercialize the micro-elastography technology.

About Biomedical Optics Express

Biomedical Optics Express is OSA’s principal outlet for serving the biomedical optics community with rapid, open-access, peer-reviewed papers related to optics, photonics and imaging in the life sciences. The journal scope encompasses theoretical modeling and simulations, technology development, and biomedical studies and clinical applications. It is published by The Optical Society and edited by Christoph Hitzenberger, Medical University of Vienna. Biomedical Optics Express is an open-access journal and is available at no cost to readers online at OSA Publishing.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts.

Share

Print


Suggested Items

DARPA, Santa Continue HO HO HO-liday Team-Up

12/26/2017 | DARPA
DARPA’s High-speed Optimized Handling of Holiday Operations (HO HO HO) initiative is celebrating its fourth anniversary this year, and the Agency is proud to continue its tradition of sharing breakthrough technologies to help Santa Claus and his elves more quickly and efficiently complete their holiday duties.

A Camera That Can See Unlike Any Imager Before It

09/20/2016 | DARPA
Picture a sensor pixel about the size of a red blood cell. Now envision a million of these pixels—a megapixel’s worth—in an array that covers a thumbnail.

Enabling Extreme New Designs for Optics and Imagers

08/22/2016 | DARPA
DARPA seeks engineered optical materials unconstrained by “laws” of classical optics to develop vastly smaller, lighter, and more capable devices for advanced imaging applications.



Copyright © 2019 I-Connect007. All rights reserved.