SLAC Develops Novel Compact Antenna for Communicating Where Radios Fail

Reading time ( words)

A new type of pocket-sized antenna, developed at the Department of Energy’s SLAC National Accelerator Laboratory, could enable mobile communication in situations where conventional radios don’t work, such as under water, through the ground and over very long distances through air.

Image Caption: A new type of pocket-sized antenna, developed at SLAC, could enable mobile communication in situations where conventional radios don’t work, such as under water, through the ground and over very long distances through air. (Greg Stewart/SLAC National Accelerator Laboratory) 

The device emits very low frequency (VLF) radiation with wavelengths of tens to hundreds of miles. These waves travel long distances beyond the horizon and can penetrate environments that would block radio waves with shorter wavelengths. While today’s most powerful VLF technology requires gigantic emitters, this antenna is only four inches tall, so it could potentially be used for tasks that demand high mobility, including rescue and defense missions.

“Our device is also hundreds of times more efficient and can transmit data faster than previous devices of comparable size,” said SLAC’s Mark Kemp, the project’s principal investigator. “Its performance pushes the limits of what’s technologically possible and puts portable VLF applications, like sending short text messages in challenging situations, within reach.”

A Sizable Challenge

In modern telecommunications, radio waves transport information through air for radio broadcasts, radar and navigation systems and other applications. But shorter-wavelength radio waves have their limits: The signal they transmit becomes weak over very long distances, can’t travel through water and is easily blocked by layers of rock.

In contrast, the longer wavelength of VLF radiation allows it to travel hundreds of feet through ground and water and thousands of miles beyond the horizon through air.

However, VLF technology also comes with major challenges. An antenna is most efficient when its size is comparable to the wavelength it emits; VLF’s long wavelength requires enormous antenna arrays that stretch for miles. Smaller VLF transmitters are much less efficient and can weigh hundreds of pounds, limiting their intended use as mobile devices. Another challenge is the low bandwidth of VLF communication, which limits the amount of data it can transmit.


A new compact antenna for very low frequency (VLF) transmissions, developed and tested at SLAC, consists of a 4-inch-long piezoelectric crystal (clear rod at center) that generates VLF radiation. (Dawn Harmer/SLAC National Accelerator Laboratory)

The new antenna was designed with these issues in mind. Its compact size could make it possible to build transmitters that weigh only a few pounds. In tests that sent signals from the transmitter to a receiver 100 feet away, the researchers demonstrated that their device produced VLF radiation 300 times more efficiently than previous compact antennas and transmitted data with almost 100 times greater bandwidth.

“There are many exciting potential applications for the technology,” Kemp said. “Our device is optimized for long-range communication through air, and our research is looking at the fundamental science behind the method to find ways to further enhance its capabilities.”



Suggested Items

Intelligent Healing for Complex Wounds

05/21/2019 | DARPA
Blast injuries, burns, and other wounds experienced by warfighters often catastrophically damage their bones, skin, and nerves, resulting in months to years of recovery for the most severe injuries and often returning imperfect results.

Stretchable Electronics that Quadruple in Length

02/29/2016 | EPFL
EPFL researchers have developed conductive tracks that can be bent and stretched up to four times their original length. They could be used in artificial skin, connected clothing and on-body sensors.

Vanishing Acts: A Call for Disappearing Delivery Vehicles

10/12/2015 | DARPA
It sounds like an engineering fantasy: A flock of small, single-use, unpowered delivery vehicles dropped from an aircraft, each of which literally vanishes after landing and delivering food or medical supplies to an isolated village during an epidemic or disaster. It would be nothing more than a fantasy, were it not that the principle behind disappearing materials has already been proven.

Copyright © 2019 I-Connect007. All rights reserved.