Wireless Movement-Tracking System Could Collect Health and Behavioral Data


Reading time ( words)

Striking a Good (Data-Collection) Balance

The researchers hope health care facilities will use Marko to passively monitor, say, how patients interact with family and caregivers, and whether patients receive medications on time. In an assisted living facility, for instance, the researchers noted specific times a nurse would walk to a medicine cabinet in a patient’s room and then to the patient’s bed. That indicated that the nurse had, at those specific times, administered the patient’s medication.

The system may also replace questionnaires and diaries currently used by psychologists or behavioral scientists to capture data on their study subjects’ family dynamics, daily schedules, or sleeping patterns, among other behaviors. Those traditional recording methods can be inaccurate, contain bias, and aren’t well-suited for long-term studies, where people may have to recall what they did days or weeks ago. Some researchers have started equipping people with wearable sensors to monitor movement and biometrics. But elderly patients, especially, often forget to wear or charge them. “The motivation here is to design better tools for researchers,” Hsu says.

Why not just install cameras? For starters, this would require someone watching and manually recording all necessary information. Marko, on the other hand, automatically tags behavioral patterns — such as motion, sleep, and interaction — to specific areas, days, and times.

Also, video is just more invasive, Hsu adds: “Most people aren’t that comfortable with being filmed all the time, especially in their own home. Using radio signals to do all this work strikes a good balance between getting some level of helpful information, but not making people feel uncomfortable.”

Katabi and her students also plan to combine Marko with their prior work on inferring breathing and heart rate from the surrounding radio signals. Marko will then be used to associate those biometrics with the corresponding individuals. It could also track people’s walking speeds, which is a good indicator of functional health in elderly patients.

“The potential here is immense,” says Cecilia Mascolo, a professor of mobile systems in the Department of Computer Science and Technology at Cambridge University. “With respect to imaging through cameras, it offers a less data-rich and more targeted model of collecting information, which is very welcome from the user privacy perspective. The data collected, however, is still very rich, and the paper evaluation shows accuracy which can enable a number of very useful applications, for example in elderly care, medical adherence monitoring, or even hospital care.”

“Yet, as a community, we need to aware of the privacy risks that this type of technology bring,” Mascolo adds. Certain computation techniques, she says, should be considered to ensure the data remains private.

Share

Print


Suggested Items

'Eyes' for the Autopilot

07/05/2019 | TUM
Automatic landings have long been standard procedure for commercial aircraft. While major airports have the infrastructure necessary to ensure the safe navigation of the aircraft, this is usually not the case at smaller airports.

DARPA Tests Advanced Chemical Sensors

05/03/2019 | DARPA
DARPA’s SIGMA program, which began in 2014, has demonstrated a city-scale capability for detecting radiological and nuclear threats that is now being operationally deployed.

Researchers Selected to Develop Novel Approaches to Lifelong Machine Learning

05/07/2018 | DARPA
Machine learning (ML) and artificial intelligence (AI) systems have significantly advanced in recent years. However, they are currently limited to executing only those tasks they are specifically designed to perform and are unable to adapt when encountering situations outside their programming or training.



Copyright © 2020 I-Connect007. All rights reserved.