Cyber Defense for Nanoelectronics


Reading time ( words)

Today’s societies critically depend on electronic systems. Past spectacular cyber-attacks have clearly demonstrated the vulnerability of existing systems and the need to prevent such attacks in the future. The majority of available cyber-defenses concentrate on protecting the software part of electronic systems or their communication interfaces.

However, manufacturing technology advancements and the increasing hardware complexity provide a large number of challenges so that the focus of attackers has shifted towards the hardware level. We saw already evidence for powerful and successful hardware-level attacks, including Rowhammer, Meltdown and Spectre.

These attacks happened on products built using state-of-the-art microelectronic technology, however, we are facing completely new security challenges due to the ongoing transition to radically new types of nanoelectronic devices, such as memristors, spintronics, or carbon nanotubes and graphene based transistors.

The use of such emerging nanotechnologies is inevitable to address the key challenges related to energy efficiency, computing power and performance. Therefore, the entire industry, are switching to emerging nano-electronics alongside scaled CMOS technologies in heterogeneous integrated systems.

These technologies come with new properties and also facilitate the development of radically different computer architectures. The new technologies and architectures provide new opportunities for achieving security targets, but also raise questions about their vulnerabilities to new types of hardware attacks.

The new Priority Program at the University of Stuttgart "Nano Security: From Nano-Electronics to Secure Systems" was approved in March 2019 and the first projects will start in 2020. It's main objective is to understand the implications of emerging nano-electronics to system security, and specifically:

To assess possible security threats and vulnerabilities stemming from novel nano-electronics. Such weaknesses can be due to fundamental properties of nano-electronic devices, or result from designers neglecting security. One goal of the SPP is to take security into account during the complete development and product life cycle. A central challenge here is to establish the connection between hardware blocks vulnerable to attacks and the consequences of the attacks at the system level.

To develop innovative approaches for system security based on nano-electronics. Security requires hardware trust anchors, which are hard to design with current technologies. For example, all current solutions to the problem of secure storage of cryptographic keys have known weaknesses. This SPP will push the use of new technology features for secure trust anchors, e.g., building new types of secure memories or PUFs.

The SPP Nano Security will enforce strong cooperation between scientists working on lower and higher levels of abstraction to develop innovative solutions for omnipresent hardware trust anchors in future computing systems, including the Internet of Things. This SPP will give security designers a new set of methods and solutions for winning the race between attackers and defenders for the next decade.

Share

Print


Suggested Items

CES 2020: The Intelligence of Things

01/06/2020 | Nolan Johnson, I-Connect007
Show week for CES 2020 starts well ahead of the actual exhibition dates because it is huge. The organizers of CES state that there are more than 4,400 exhibiting companies and nearly three million net square feet of exhibit space. On the floor, you can find 307 of the 2018 Fortune Global 500 companies. Over the week, I-Connect007 Editors Dan Feinberg and Nolan Johnson will bring you some of the most interesting news, products, and announcements from 5G to IoT, semiconductor developments, autonomous vehicle technology, interconnect, fabrication materials, and much more.

Beyond Scaling: An Electronics Resurgence Initiative

06/05/2017 | DARPA
The Department of Defense’s proposed FY 2018 budget includes a $75 million allocation for DARPA in support of a new, public-private “electronics resurgence” initiative. The initiative seeks to undergird a new era of electronics in which advances in performance will be catalyzed not just by continued component miniaturization but also by radically new microsystem materials, designs, and architectures.

Today’s MilAero Options, Part 1: 'Pride Goeth Before...'

04/12/2016 | Marc Carter
Historians, with their 20/20 hindsight, often write about the inevitable decline and fall of kingdoms, empires, religions, organizations, governments, and all the other permanent structures we humans build.



Copyright © 2020 I-Connect007. All rights reserved.