Discovery Sheds Light on Synthesis, Processing of High-Performance Solar Cells
June 10, 2019 | NC State UniversityEstimated reading time: 2 minutes

Halide perovskite solar cells hold promise as the next generation of solar cell technologies, but while researchers have developed techniques for improving their material characteristics, nobody understood why these techniques worked. New research sheds light on the science behind these engineering solutions and paves the way for developing more efficient halide perovskite solar cells.
“This is about material design,” says Aram Amassian, co-corresponding author of a paper on the work and an associate professor of materials science and engineering at North Carolina State University.
“If you want to intentionally engineer halide perovskite solar cells that have the desirable characteristics you’re looking for, you have to understand not only how the material behaves under different conditions, but why,” Amassian says. “This work gives us a fuller understanding of this class of materials, and that understanding will illuminate our work moving forward.”
Halide perovskites are basically salts, with positively and negatively charged components that come together to form a neutral compound. And they have several characteristics that make them desirable for manufacturing high-efficiency solar cells. They can be dissolved into a liquid and then form high-quality crystals at low temperatures, which is attractive from a manufacturing standpoint. In addition, they are easy to repair and can tolerate defects in the material without seeing a big drop-off in their semiconductor properties.
An international team of researchers delved into a key phenomenon related to halide perovskite solar cell synthesis and processing. It involves the fact that adding cesium and rubidium into the synthesis process of mixed halide perovskite compounds makes the resulting solar cell more chemically homogeneous—which is desirable, since this makes the material’s characteristics more uniform throughout the cell. But until now, no one knew why.
To investigate the issue, the researchers used time-resolved, X-ray diagnostics to capture and track changes in the crystalline compounds formed throughout the synthesis process. The measurements were performed at the Cornell High Energy Synchrotron Source.
“These studies are critical in defining the next steps toward the market readiness of perovskite-based solar cells,” says Stefaan De Wolf, co-corresponding author of the paper and an associate professor of materials science and engineering at the King Abdullah University of Science and Technology (KAUST).
“What we found is that some of the precursors, or ingredients, want to form several compounds other than the one we want, which can cluster key elements irregularly throughout the material,” Amassian says. “That was something we didn’t know before.
“We also found that introducing cesium and rubidium into the process at the same time effectively suppresses the formation of those other compounds, facilitating the formation of the desired, homogeneous halide perovskite compound that is used to make high performance solar cells.”
Next steps for the work include translating these lessons from laboratory-based spin-coating to large area manufacturing platforms which will enable the high throughput fabrication of perovskite solar cells.
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
Creating a Design Constraint Strategy
07/24/2025 | I-Connect007 Editorial TeamMost designers learn how to set their design constraints through trial and error. EDA vendors’ guidelines explain how to use their particular tools’ constraints, and IPC standards offer a roadmap, but PCB designers usually develop their own unique styles for setting constraints. Is there a set of best practices for setting constraints? That’s what I asked Global Electronics Association design instructor Kris Moyer, who covers design constraints in his classes.
Meet the Author: Beth Turner Explores Encapsulating Sustainability for Electronics
07/23/2025 | I-Connect007In a special Meet the Author edition of On the Line with…, host Nolan Johnson welcomes Beth Turner, senior technical manager at MacDermid Alpha Electronics Solutions. Beth is the author of The Printed Circuit Assembler’s Guide to… Encapsulating Sustainability for Electronics.
The Pulse: Design Constraints for the Next Generation
07/17/2025 | Martyn Gaudion -- Column: The PulseIn Europe, where engineering careers were once seen as unpopular and lacking street credibility, we have been witnessing a turnaround in the past few years. The industry is now welcoming a new cohort of designers and engineers as people are showing a newfound interest in the profession.
Copper Price Surge Raises Alarms for Electronics
07/15/2025 | Global Electronics Association Advocacy and Government Relations TeamThe copper market is experiencing major turbulence in the wake of U.S. President Donald Trump’s announcement of a 50% tariff on imported copper effective Aug. 1. Recent news reports, including from the New York Times, sent U.S. copper futures soaring to record highs, climbing nearly 13% in a single day as manufacturers braced for supply shocks and surging costs.
Symposium Review: Qnity, DuPont, and Insulectro Forge Ahead with Advanced Materials
07/02/2025 | Barb Hockaday, I-Connect007In a dynamic and informative Innovation Symposium hosted live and on Zoom on June 25, 2025, representatives from Qnity (DuPont's electronics business), DuPont, and Insulectro discussed the evolving landscape of flexible circuit materials. From strategic corporate changes to cutting-edge polymer films, the session offered deep insight into design challenges, reliability, and next-gen solutions shaping the electronics industry.