Mobility Lab Helps Fight Motion Sickness in Self-Driving Cars


Reading time ( words)

Autonomous cars are safer to drive and offer passengers the opportunity to relax, sit back and enjoy while being transported to their destination. There is a drawback, though. Many people experience motion sickness when reading or watching a movie in a moving car.

Image Caption: The Vibrotactile Display with Active Movement Mechanism (VDAM) combines vibrations in the forearm and through moveable plates in the chair

Two Malaysian researchers at the faculty of Industrial Design of the Eindhoven University of Technology, Nidzamuddin Md. Yusof and Juffrizal Karjanto, have found ways to alleviate this problem by increasing the so-called passengers’ situational awareness. To test their solution they built a Mobility Lab, a special car outfitted with instruments that simulates an autonomous car. Md. Yusof and Karjanto will defend their dissertations on July 3th and 4th at the TU/e.

In a fully automated vehicle, human drivers become passengers. While the car handles all driving tasks and decisions, they have the freedom to engage in work, socializing or leisure activities. However, once involved in non-driving tasks, people tend to become unaware of the intentions of the vehicle. As a result, they are unprepared for the forces generated from acceleration, braking or turning. For many people this leads to motion sickness, a serious problem that may hamper the further development of self-driving cars.

This may be solved by letting autonomous cars drive in a more defensive manner, avoiding abrupt changes in direction or speed. However, in an urban environment with many junctions and corners, this is not a solution.

Mobility Lab

To provide a better alternative, the two researchers developed four non-intrusive devices that inform the passenger about his whereabouts without the need to look outside. Two devices provided peripheral information through a visual display, the other two through haptic feedback. They tested their devices in a specially outfitted car, the Mobility Lab, that simulates an automated car in real life. This provided them with much more relevant results than traditional simulators.

car2.jpg

Peripheral visual feedforward system (PVFS): (left) Positioning inside the Mobility Lab; (right) Light moving from bottom to top on the right side to indicate that the fully automated vehicle is about to turn to the right.

The devices were tested on around 20 passengers each, with every participant undergoing three separate one-hour sessions where they had to either watch a movie or read a book on a tablet. The results show that all four systems increased the situation awareness of the participants. Two devices also managed to reduce symptoms of motion sickness: the Peripheral Visual Feedforward System (PVFS) (for participants who watched a movie), and the Vibrotactile Display with Active Movement Mechanism (VDAM) (for participants who read a book on a tablet).

The PVFS consists of two rows of 32 LED lights left and right of the movie screen, that inform the passenger in an unobtrusive way of the intended turn of the car. The VDAM conveys information about the car’s intentions by vibrations in the forearm and through moveable plates in the chair.

Future Design

The researchers hope their work contributes to the design of future interfaces inside the interiors of automated vehicles. “We mainly focused on the vehicle’s technology and its impact on motion sickness, but the development of a sustainable product should also take into account the passengers’ comfort and experience. This requires the input from different educational and experience backgrounds.”

The Mobility Lab will remain at the Department of Industrial Design in the TU/e, and will be used for further research into the design of self-driving cars. In addition, an identical version of the Mobility Lab will be developed at the Universiti Teknikal Malaysia Melaka, with collaboration from TU/e, focusing on Asian users.

Share

Print


Suggested Items

Worldwide Semiconductor Equipment Billings at $13.3 Billion in 2Q19; Down 20%

09/12/2019 | SEMI
Worldwide semiconductor manufacturing equipment billings reached $13.3 billion in the second quarter of 2019, down 20% from the same quarter of 2018 and 3% from than the previous quarter.

Designing Chips for Real Time Machine Learning

04/01/2019 | DARPA
DARPA’s Real Time Machine Learning (RTML) program seeks to reduce the design costs associated with developing ASICs tailored for emerging ML applications by developing a means of automatically generating novel chip designs based on ML frameworks.

DARPA’s Drive to Keep the Microelectronics Revolution at Full Speed Builds Its Own Momentum

08/28/2017 | DARPA
To perpetuate the pace of innovation and progress in microelectronics technology over the past half-century, it will take an enormous village rife with innovators. This week, about 100 of those innovators throughout the broader technology ecosystem, including participants from the military, commercial, and academic sectors, gathered at DARPA headquarters at the kickoff meeting for the Agency’s new CHIPS program, known in long form as the Common Heterogeneous Integration and Intellectual Property (IP) Reuse Strategies program.



Copyright © 2019 I-Connect007. All rights reserved.