Red Wine May Hold the Key to Wearable Electronics


Reading time ( words)

A team of scientists are seeking to kick-start a wearable technology revolution by creating flexible fibres and adding acids from red wine.

Extracting tannic acid from red wine, coffee or black tea, led a team of scientists from The University of Manchester to develop much more durable and flexible wearable devices. The addition of tannins improved mechanical properties of materials such as cotton to develop wearable sensors for rehabilitation monitoring, drastically increasing the devices lifespan.

The team have developed wearable devices such as capacitive breath sensors and artificial hands for extreme conditions by improving the durability of flexible sensors. Previously, wearable technology has been subject to fail after repeated bending and folding which can interrupt the conductivity of such devices due to tiny micro cracks. Improving this could open the door to more long-lasting integrated technology.

Dr Xuqing Liu who led the research team said: "We are using this method to develop new flexible, breathable, wearable devices. The main research objective of our group is to develop comfortable wearable devices for flexible human-machine interface.

“Traditional conductive material suffers from weak bonding to the fibers which can result in low conductivity. When red wine, or coffee, or black tea, is spilled on a dress, it's difficult to get rid of these stains. The main reason is that they all contain tannic acid, which can firmly adsorb the material on the surface of the fiber. This good adhesion is exactly what we need for durable wearable, conductive devices.”

The new research published in the journal Small ("A Nature-Inspired, Flexible Substrate Strategy for Future Wearable Electronics") demonstrated that without this layer of tannic acid, the conductivity is several hundred times, or even thousands of times, less than traditional conductive material samples as the conductive coating becomes easily detached from the textile surface through repeated bending and flexing.

The team used commercially available tannins but also tried to immerse the fabric directly in red wine, black tea and black coffee solutions where they saw the same results. The overall impact of this new method could see a reduction in price for wearable technology along with improvements in comfort and robustness.

The improved conductivity using natural sources can allow technology developers to use more comfortable fabrics, such as cotton, to replace nylon, which is stiff and uncomfortable. The technology can also allow for circuits to be printed directly on to the surface of clothing to make a comfortable, flexible circuit board.

Due to the strong adsorption of tannic acid, the surface conductive coating has good durability, and the developed wearable devices maintain excellent performance after bending, folding and stretching.

Share

Print


Suggested Items

For Climbing Robots, the Sky's the Limit

07/15/2019 | NASA
Robots can drive on the plains and craters of Mars, but what if we could explore cliffs, polar caps and other hard-to-reach places on the Red Planet and beyond? Designed by engineers at NASA's Jet Propulsion Laboratory in Pasadena, California, a four-limbed robot named LEMUR (Limbed Excursion Mechanical Utility Robot) can scale rock walls, gripping with hundreds of tiny fishhooks in each of its 16 fingers and using artificial intelligence (AI) to find its way around obstacles.

Enabling Revolutionary Nondestructive Inspection Capability

06/17/2019 | DARPA
X-rays and gamma rays have a wide range of applications including scanning suspicious maritime shipping containers for illicit materials, industrial inspection of materials and processes, and medical diagnostic and therapeutic procedures.

NASA Selects First Commercial Moon Landing Services for Artemis Program

06/11/2019 | NASA
NASA has selected three commercial Moon landing service providers that will deliver science and technology payloads under Commercial Lunar Payload Services (CLPS) as part of the Artemis program. Each commercial lander will carry NASA-provided payloads that will conduct science investigations and demonstrate advanced technologies on the lunar surface, paving the way for NASA astronauts to land on the lunar surface by 2024.



Copyright © 2019 I-Connect007. All rights reserved.