Life-Like Robots Soon to Be Reality

Reading time ( words)

Life-like robots that can make decisions, adapt to their environment and learn, are one step closer thanks to a University of Bristol team who has demonstrated a new way of embedding computation into soft robotic materials. This new advance, published in Science Robotics, could create new robotic possibilities to environmental monitoring, pollution clean-up, drug delivery, prosthetic devices, wearable biosensing and self-healing composites.

So far, the complexity and range of learnt behaviours which can be created using only materials-based control approaches have been limited.

Taking inspiration from biology, the concept of Soft Matter Computers (SMCs) aims to mimic the workings of the vascular system, where hormones such as adrenaline are released into the bloodstream and disperse throughout the body. When detected by a receptor, hormones then trigger responses in particular parts of the body such as increased blood flow in flight muscles and dilation of the pupils in the eyes.

Now, researchers from Bristol’s Faculty of Engineering, led by Professor of Robotics Jonathan Rossiter, have successfully demonstrated a new mechanism that enabled computation to be embedded into three soft robots. In the paper, the team describe how a conductive fluid receptor (CFR) is a viable and fundamental building block for a range of SMCs and next-generation robots.

In the future, soft matter computers could mirror this process by translating information within the structure of a fluidic tape that travels through the soft body of the robot, and then is detected by an appropriate receptor and then generates an output.

Professor Rossiter said: “We have taken an important step toward entirely soft, autonomous robots and for smart materials to move beyond stimulus-response relationships which could enable the intelligent behaviours seen in living organisms. Soft robots could become even more life-like; capable of independently adapting to their environment and can demonstrate the diversity of behaviours seen in the natural world.”



Suggested Items

Brittle Pals Bond for Flexible Electronics

05/13/2019 | Rice University
Mixing two brittle materials to make something flexible defies common sense, but Rice University scientists have done just that to make a novel dielectric. Dielectrics are the polarized insulators in batteries and other devices that separate positive and negative electrodes. Without them, there are no electronic devices.

Beyond Scaling: An Electronics Resurgence Initiative

06/05/2017 | DARPA
The Department of Defense’s proposed FY 2018 budget includes a $75 million allocation for DARPA in support of a new, public-private “electronics resurgence” initiative. The initiative seeks to undergird a new era of electronics in which advances in performance will be catalyzed not just by continued component miniaturization but also by radically new microsystem materials, designs, and architectures.

DARPA Researchers Develop Novel Method for Room-Temperature Atomic Layer Deposition

09/01/2016 | DARPA
DARPA-supported researchers have developed a new approach for synthesizing ultrathin materials at room temperature—a breakthrough over industrial approaches that have demanded temperatures of 800 degrees Celsius or more. T

Copyright © 2019 I-Connect007. All rights reserved.