Replaceable Solar Cell


Reading time ( words)

A new study shows that, contrary to widespread belief within the solar power industry, new kinds of solar cells and panels don’t necessarily have to last for 25 to 30 years in order to be economically viable in today’s market.

Rather, solar panels with initial lifetimes of as little as 10 years can sometimes make economic sense, even for grid-scale installations — thus potentially opening the door to promising new solar photovoltaic technologies that have been considered insufficiently durable for widespread use.

The new findings are described in a paper in the journal Joule, by Joel Jean, a former MIT postdoc and CEO of startup company Swift Solar; Vladimir Bulović, professor of electrical engineering and computer science and director of MIT.nano; and Michael Woodhouse of the National Renewable Energy Laboratory (NREL) in Colorado.

“When you talk to people in the solar field, they say any new solar panel has to last 25 years,” Jean says. “If someone comes up with a new technology with a 10-year lifetime, no one is going to look at it. That’s considered common knowledge in the field, and it’s kind of crippling.”

Jean adds that “that’s a huge barrier, because you can’t prove a 25-year lifetime in a year or two, or even 10.” That presumption, he says, has left many promising new technologies stuck on the sidelines, as conventional crystalline silicon technologies overwhelmingly dominate the commercial solar marketplace. But, the researchers found, that does not need to be the case.

“We have to remember that ultimately what people care about is not the cost of the panel; it’s the levelized cost of electricity,” he says. In other words, it’s the actual cost per kilowatt-hour delivered over the system’s useful lifetime, including the cost of the panels, inverters, racking, wiring, land, installation labor, permitting, grid interconnection, and other system components, along with ongoing maintenance costs.

Part of the reason that the economics of the solar industry look different today than in the past is that the cost of the panels (also known as modules) has plummeted so far that now, the “balance of system” costs — that is, everything except the panels themselves —  exceeds that of the panels. That means that, as long as newer solar panels are electrically and physically compatible with the racking and electrical systems, it can make economic sense to replace the panels with newer, better ones as they become available, while reusing the rest of the system.

“Most of the technology is in the panel, but most of the cost is in the system,” Jean says. “Instead of having a system where you install it and then replace everything after 30 years, what if you replace the panels earlier and leave everything else the same? One of the reasons that might work economically is if you’re replacing them with more efficient panels,” which is likely to be the case as a wide variety of more efficient and lower-cost technologies are being explored around the world.

He says that what the team found in their analysis is that “with some caveats about financing, you can, in theory, get to a competitive cost, because your new panels are getting better, with a lifetime as short as 15 or even 10 years.”

Although the costs of solar cells have come down year by year, Bulović says, “the expectation that one had to demonstrate a 25-year lifetime for any new solar panel technology has stayed as a tautology. In this study we show that as the solar panels get less expensive and more efficient, the cost balance significantly changes.”

He says that one aim of the new paper is to alert the researchers that their new solar inventions can be cost-effective even if relatively short lived, and hence may be adopted and deployed more rapidly than expected. At the same time, he says, investors should know that they stand to make bigger profits by opting for efficient solar technologies that may not have been proven to last as long, knowing that periodically the panels can be replaced by newer, more efficient ones.

Share

Print


Suggested Items

'Eyes' for the Autopilot

07/05/2019 | TUM
Automatic landings have long been standard procedure for commercial aircraft. While major airports have the infrastructure necessary to ensure the safe navigation of the aircraft, this is usually not the case at smaller airports.

DARPA Tests Advanced Chemical Sensors

05/03/2019 | DARPA
DARPA’s SIGMA program, which began in 2014, has demonstrated a city-scale capability for detecting radiological and nuclear threats that is now being operationally deployed.

Researchers Selected to Develop Novel Approaches to Lifelong Machine Learning

05/07/2018 | DARPA
Machine learning (ML) and artificial intelligence (AI) systems have significantly advanced in recent years. However, they are currently limited to executing only those tasks they are specifically designed to perform and are unable to adapt when encountering situations outside their programming or training.



Copyright © 2019 I-Connect007. All rights reserved.