NEC Successfully Demonstrates Real-time Digital OAM Mode Multiplexing Transmission Over 100m in the 150GHz-band

Reading time ( words)

NEC Corporation, a leader in the integration of IT and network technologies, announced today the world's first(1) successful demonstration of real-time digital wireless Orbital Angular Momentum (OAM) mode multiplex radio transmission combining polarization multiplexing transmission(2) over 100m in the 150GHz-band. This technology is expected to help solve increasing demands for high-capacity wireless connections for networks in the 5G era and beyond.

NEC has an accomplished history of developing OAM mode multiplexing technology, including the successful demonstration of OAM mode multiplexing transmission over 40m in the 80GHz-band in December 2018(3). This time, NEC has succeeded in extending the transmission distance up to 100m, 2.5 times further, and increased the capacity by as much as two times with 16 streams by adding polarization multiplexing to OAM mode multiplexing, as compared with the 80GHz-band demonstration.

NEC plans to apply this technology to its iPASOLINK series of super compact microwave radio systems, mmWave radio products, and mobile backhaul solutions that enable ultra-high capacity for 5G and beyond 5G (B5G) networks.

Due to rapid increases of data capacity in 5G networks, traffic volumes between 5Gbase station aggregation terminals could reach up to 100Gbps. Moreover, an extremely large number of base stations are required for detailed coverage, especially in ultra-dense urban areas, where the cell grid becomes heavily dense. Since it is difficult to connect these high-density cell sites with just optical fibers, expectations for wireless networking, especially in terms of easy and flexible installation, are increasing.

However, it is necessary for traffic between 5G base stations to reach up to 100Gbps, and it is extremely challenging to create sufficient transmission capacity with conventional technologies, such as using wider channels, multi channels or increasing the modulation scheme. Therefore, OAM mode multiplexing technology, which has the potential to support significantly higher capacity due to rich multiplicity, is attracting a great deal of attention.

OAM is one of the physical characteristics of electro-magnetic wave propagation. One feature of an OAM signal is its spiral phase front in the propagation direction. The number of spiral planes in a signal is called an OAM mode, and the shapes of all modes are different related to the rotating direction of the wave; this means that all of the OAM modes are independent of each other. Therefore, multiple OAM modes transmitted on the same channel simultaneously can be separated and demodulated by receivers. This is an OAM mode multiplexing transmission technology as a spatial multiplexing of electro-magnetic waves on the same path. In addition, OAM mode multiplexing is independent of polarization multiplexing as well. The multiplicity can be further increased with the combination of both multiplexing technologies.

NEC announced the development and successful demonstration of a real-time digital signal processing circuit in December 2018. This achieved a wireless transmission over a distance of 40m with a modulation of 256QAM in the E-band (71 to 86GHz) by multiplexing 8 OAM modes, however this was used for just one polarization only.

In the latest demonstration, twice as many modes have been multiplexed for 16 streams of 256QAM modulated signals by adding polarization multiplexing with the OAM mode multiplexing technology. 14.8Gbps (8 modes x dual polarization x 8 bit/symbol x 115 Mbaud) have been transmitted using a symbol rate(4) of 115 Mbaud.

Moreover, NEC achieved transmissions across 100m, 2.5 times the previous demonstration, with almost the same size antenna diameter, suppressing the divergence of OAM mode signals due to propagation by using D-band (130 to 174.8GHz), which is a higher frequency band than E-band.

This demonstration transmitted at an RF frequency of 157GHz through a radio equipped with D-band RF devices developed by NEC.

In order to perform OAM mode multiplexing transmission combined with polarization multiplexing, it is necessary to perform both OAM mode and polarization separation on the receiving side and to retrieve information with high SINR(5). 

NEC's newly developed adaptive(6) digital signal processing circuit provides highly accurate extraction of the desired signals, even under conditions in which there is interference with OAM inter-modes as well as cross polarizations due to equipment imperfections or volatilities of the propagation environments. As a result, an extremely high spectrum efficiency of 128bps/Hz(7) has been achieved. 

Going forward, NEC plans to further enhance transmission distance, and to realize a transmission capacity of more than 100Gbps with LSI implementing the digital signal processing circuits, and wider bandwidth up to 1GHz. NEC aims to apply these technologies for the backhaul of 5G base stations as well as the fronthaul between CU (Central Unit: aggregation base stations) and DU (Distributed Unit: remote stations). 

This research and development was conducted as part of "The Research and Development Project of OAM Mode Multiplexing Radio enabling Ultra High Capacity Transmission in Millimeter wave bands" under a contract with the Ministry of Internal Affairs and Communications, Japan.

(1) According to NEC research.
(2) Multiplexing of electro-magnetic waves in vertical and horizontal directions. As they do not interfere with each other, the technology has been conventionally used to achieve double-capacity in the wireless transmission.
(3) Please refer to the following:
(4) In digital modulation, the transmission symbols are switched at fixed time intervals. The reciprocal of this switching interval is called baud rate (unit = baud).
(5) Signal to interference / noise power ratio. Higher SINR value is required to obtain higher spectrum efficiency.
(6) Ability to change the control automatically with the change of environmental conditions.
(7) The transmission capacity per 1Hz. The higher the value, the higher the efficiency of the radio wave use.



Suggested Items

My View from CES 2021: Day 1

01/12/2021 | Dan Feinberg, Technology Editor, I-Connect007
What a difference a year makes. One year ago, those of us who cover and attend CES were going from one press conference to the next; this year, we are at home going from link to link. Confusing and challenging, yes, but there are some advantages: no masks, only five steps to get to a restroom, being able to have three of four events or more displaying on your screens at the same time and being able to download press kits as needed. So far, many new devices are being introduced, but of course, they are all online, so you wonder if some of them really exist or are truly operational as yet.

CES 2021: Just How Different Will It Be?

01/11/2021 | Dan Feinberg, I-Connect007
CES 2021 starts today and this year there is no need for an overpriced hotel room in Vegas, no long lines to get a taxi or board a bus, and no crowded exhibit halls (one good thing this year). On the other hand, you must decide ahead of time what you want to see and make a reservation or appointment if you wish to have time and access assured.

CES 2020: The Intelligence of Things

01/06/2020 | Nolan Johnson, I-Connect007
Show week for CES 2020 starts well ahead of the actual exhibition dates because it is huge. The organizers of CES state that there are more than 4,400 exhibiting companies and nearly three million net square feet of exhibit space. On the floor, you can find 307 of the 2018 Fortune Global 500 companies. Over the week, I-Connect007 Editors Dan Feinberg and Nolan Johnson will bring you some of the most interesting news, products, and announcements from 5G to IoT, semiconductor developments, autonomous vehicle technology, interconnect, fabrication materials, and much more.

Copyright © 2021 I-Connect007. All rights reserved.