NeoPhotonics Unveils Complete L-Band Coherent Optics Solution to Double Optical Fiber Capacity


Reading time ( words)

NeoPhotonics Corporation, a leading developer and manufacturer of silicon photonics and advanced hybrid photonic integrated circuit based lasers, modules and subsystems for bandwidth-intensive, high speed optical networks, today announced an L-Band suite of coherent optical components, including its 64 GBaud L-Band High Bandwidth Coherent Driver Modulator (HB-CDM), 64 GBaud L-Band Intradyne Coherent Receiver (ICR) and ultra-narrow linewidth L-Band tunable laser Micro-ITLA. Together with NeoPhotonics standard C-Band coherent components, these new products enable customers to double the capacity of optical fiber links.

The C-Band is the primary band for telecommunications with wavelengths centered around 1550 nm. The L-Band uses wavelengths centered around 1590 nm and is primarily used to complement the C-Band to increase data capacity, especially in long-haul networks. By adding channels in the L-Band, operators can double the capacity of an optical fiber. NeoPhotonics 64 Gbaud coherent components and tunable lasers enable single channel 600G data transmission over short haul data center interconnect (DCI) links using 64 QAM. These components also support 400G over metro distances of 400-600 km using 64 GBaud and 16 QAM or 200G over long-haul distances of greater than 1000 km using 64 GBaud and QPSK.

The NeoPhotonics L-Band External Cavity (ECL) micro-ITLA incorporates the same laser architecture as our C-Band laser for a pure optical signal with an ultra-narrow linewidth and very low phase noise. In coherent systems, any error in the phase of the signal and reference lasers, due to the laser’s linewidth, can cause data errors, thereby making narrow linewidth critical in systems using higher order modulation.

The NeoPhotonics 64 Gbaud L-Band HB-CDM co-packages an Indium Phosphide based Mach-Zehnder (MZ) quadrature modulator chip with a linear, quad-channel, differential 64 GBaud driver. Both the C-Band and L-Band versions of the HB-CDM are designed to be compliant to the Optical Internetworking Forum (OIF) Implementation Agreement OIF-HB-CDM-01.0 “High Bandwidth Coherent Driver Modulator” (www.oiforum.com).

NeoPhotonics 64 Gbaud L-Band Micro-ICR incorporates an integrated comixer chip and four balanced photodiodes with four differential linear amplifiers to provide four output channels at 64 GBaud. The form factor of the High Bandwidth Coherent Receiver is designed to be compliant with the OIF Implementation Agreement for Micro Integrated Intradyne Coherent Receivers; IA # OIF-DPC-MRX-02.0.

For applications that require more capacity than provided by the standard C-Band, but do not require the full L-Band, each of these components is available in a “C++” version, which supports tuning across the full “Super C-band” covering 6.0 THz of spectrum or up to 50 percent more than standard systems. These C++ components can support 80 channels at 75 GHz channel spacing, which effectively increases the capacity of an optical fiber by as much as 50 percent over standard C-Band only systems at comparable distances.

"We are pleased to add L-Band versions to our existing suite of coherent components, thus providing customers with a complete solution to their fiber capacity requirements, whether C-Band, C++ Band or L-Band," said Tim Jenks, Chairman and CEO of NeoPhotonics. "Our ultra-pure tunable laser design and our high performance coherent modulator and receiver designs are very flexible and excel in different spectral regimes to provide the highest speed over distance performance," concluded Mr. Jenks.

Share

Print


Suggested Items

CES Press Kickoff Presentation

01/07/2020 | Nolan Johnson, I-Connect007
On January 5, Editor Nolan Johnson attended the CES press kickoff presentation “2020 Trends to Watch,” which was hosted by CES Vice President of Research Steve Koenig and CES Director of Research Lesley Rohrbaugh. Koenig and Rohrbaugh set the stage for the week with their presentation, answering the question, “What’s happening in the industry?”

NASA Sounding Rocket Technology Could Enable Simultaneous, Multi-Point Measurements — First-Ever Capability

10/21/2019 | NASA
NASA engineers plan to test a new avionics technology — distributed payload communications — that would give scientists a never-before-offered capability in sounding rocket-based research.

Worldwide Semiconductor Equipment Billings at $13.3 Billion in 2Q19; Down 20%

09/12/2019 | SEMI
Worldwide semiconductor manufacturing equipment billings reached $13.3 billion in the second quarter of 2019, down 20% from the same quarter of 2018 and 3% from than the previous quarter.



Copyright © 2020 I-Connect007. All rights reserved.