New Design Sandwiches Polar Metallic Oxide Between an Insulating Material


Reading time ( words)

From the spinning disc of a computer’s hard drive to the varying current in a transformer, many technological devices work by merging electricity and magnetism. But the search to find a single material that combines both electric polarizations and magnetizations remains challenging.

This elusive class of materials is called multiferroics, which combine two or more primary ferroic properties. Northwestern Engineering’s James Rondinelli and his research team are interested in combining ferromagnetism and ferroelectricity, which rarely coexist in one material at room temperature.

“Researchers have spent the past decade or more trying to find materials that exhibit these properties,” said Rondinelli, assistant professor of materials science and engineering at the McCormick School of Engineering. “If such materials can be found, they are both interesting from a fundamental perspective and yet even more attractive for technological applications.”

In order for ferroelectricity to exist, the material must be insulating. For this reason, nearly every approach to date has focused on searching for multiferroics in insulating magnetic oxides. Rondinelli’s team started with a different approach. They instead used quantum mechanical calculations to study a metallic oxide, lithium osmate, with a structural disposition to ferroelectricity and sandwiched it between an insulating material, lithium niobate.

While lithium osmate is a non-magnetic and non-insulating metal, lithium niobate is insulating and ferroelectric but also non-magnetic. By alternating the two materials, Rondinelli created a superlattice that — at the quantum scale — became insulating, ferromagnetic, and ferroelectric at room temperature.

“The polar metal became insulating through an electronic phase transition,” Rondinelli explained. “Owing to the physics of the enhanced electron-electron interactions in the superlattice, the electronic transition induces an ordered magnetic state.”

Supported by the Army Research Office and the US Department of Defense, the research appears in the August 21 issue of Physical Review Letters. Danilo Puggioni, a postdoctoral fellow in Rondinelli’s lab, is the paper’s first author, who is joined by collaborators at the International School for Advanced Studies in Trieste, Italy.

This new design strategy for realizing multiferroics could open up new possibilities for electronics, including logic processing and new types of memory storage. Multiferroic materials also hold potential for low-power electronics as they offer the possibility to control magnetic polarizations with an electric field, which consumes much less energy.

“Our work has turned the paradigm upside down,” Rondinelli said. “We show that you can start with metallic oxides to make multiferroics.”

Share

Print


Suggested Items

Burt Rutan’s Keynote: SpaceShipOne

03/02/2020 | Pete Starkey, I-Connect007
In this video clip from his presentation, Burt Rutan discusses some of his aircraft’s revolutionary flights that drew the most public attention, including SpaceShipOne, which flew three of the five manned space flights launched by man in 2004. He also explains the benefits of working with Microsoft’s Paul Allen, who agreed to fund SpaceShipOne based on a simple handshake.

Uncertainties in the Market Rise while a Bounce in NAND Flash Prices Remains Unlikely in 3Q

06/20/2019 | TrendForce
According to the latest investigations by DRAMeXchange, a division of TrendForce, demand for smartphones and servers go below expected levels in 2019 as the US-China trade dispute heats up.

NASA Awards Artemis Contract for Lunar Gateway Power, Propulsion

05/27/2019 | NASA
In one of the first steps of the agency’s Artemis lunar exploration plans, NASA announced the selection of Maxar Technologies, formerly SSL, in Westminster, Colorado, to develop and demonstrate power, propulsion and communications capabilities for NASA’s lunar Gateway.



Copyright © 2020 I-Connect007. All rights reserved.