'Chemical Laptop' Could Search for Signs of Life Outside Earth


Reading time ( words)

Testing for future uses

Last year the researchers did a field test at JPL's Mars Yard, where they placed the Chemical Laptop on a test rover.

"This was the first time we showed the instrument works outside of the laboratory setting. This is the first step toward demonstrating a totally portable and automated instrument that can operate in the field," said Mora.

For this test, the laptop analyzed a sample of "green rust," a mineral that absorbs organic molecules in its layers and may be significant in the origin of life, said JPL's Michael Russell, who helped provide the sample.

"One ultimate goal is to put a detector like this on a spacecraft such as a Mars rover, so for our first test outside the lab we literally did that," said Willis.

Since then, Mora has been working to improve the sensitivity of the Chemical Laptop so it can detect even smaller amounts of amino acids or fatty acids. Currently, the instrument can detect concentrations as low as parts per trillion. Mora is currently testing a new laser and detector technology.

Coming up is a test in the Atacama Desert in Chile, with collaboration from NASA's Ames Research Center, Moffett Field, California, through a grant from NASA's Planetary Science & Technology Through Analog Research (PSTAR) program.

"This could also be an especially useful tool for icy-worlds targets such as Enceladus and Europa. All you would need to do is melt a little bit of the ice, and you could sample it and analyze it directly," Creamer said.

The Chemical Laptop technology has applications for Earth, too. It could be used for environmental monitoring -- analyzing samples directly in the field, rather than taking them back to a laboratory. Uses for medicine could include testing whether the contents of drugs are legitimate or counterfeit. 

Creamer recently won an award for her work in this area at JPL's Postdoc Research Day Poster Session.

NASA's PICASSO program, part of the agency's Science Mission Directorate in Washington, supported this research. The California Institute of Technology in Pasadena manages JPL for NASA.

Share

Print


Suggested Items

Brittle Pals Bond for Flexible Electronics

05/13/2019 | Rice University
Mixing two brittle materials to make something flexible defies common sense, but Rice University scientists have done just that to make a novel dielectric. Dielectrics are the polarized insulators in batteries and other devices that separate positive and negative electrodes. Without them, there are no electronic devices.

The Incredible Loudness of Whispering

09/05/2016 | DARPA
In a vision shared by innovators, entrepreneurs, and planners in both defense and civilian contexts, the skies of the future will be busy with unmanned aerial vehicles (UAVs).

Lab Tests Armored Vehicles with Auto Industry 'Dummies'

07/25/2016 | U.S. Army
In an unassuming warehouse on Aberdeen Proving Ground, Maryland sit nearly 50 men in uniform, waiting for their mission during an upcoming test event. They're sporting Army Combat Uniforms, standard-issue boots, a crane hook protruding from their heads, and a plethora of color-coded wires spilling out the back of their necks.



Copyright © 2022 I-Connect007. All rights reserved.