Seeking a New Generation of Light-based Sensing Systems
December 7, 2015 | DARPAEstimated reading time: 3 minutes
Find a way to replace a large, heavy and expensive technology with an equivalent one that’s a lot smaller, lighter and cheaper and you have a shot at turning a boutique technology into a world changer. Think of the room-sized computers of the 1940s that now are outpowered by the run-of-the-mill central processing units in laptop computers. Or the miniaturized GPS components that contribute geolocation smartness in cell phones. DARPA program manager Joshua Conway has another shrinking act in mind: packing the light-catching powers of bulky lens-filled telescopes onto flat, semiconductor wafers that are saucer-sized or smaller, featherweight and cheap to make.
The primary goal of the newly-announced Modular Optical Aperture Building Blocks (MOABB) program is to develop the advanced technologies it will take to build ultracompact light detection and ranging (LIDAR) systems, which use light to image objects and their motions in the same way that RADAR systems use radio waves. A LIDAR system beams light out and then precisely monitors the timing of reflections to map and track objects within its detection range. Unlike a camera that captures a two-dimensional rendition of three-dimensional scenes, a LIDAR system essentially captures full-fledged three-dimensional reality. The basic technology already is out there—LIDAR allowed many robots at the DARPA Robotics Challenge to “see” and it enables autonomous vehicles to sense obstacles in their surroundings, for example—but those systems are too big, heavy and expensive for widespread use.
The range of applications for compact LIDAR systems that can provide real-time data on even subtly changing positions and velocities of nearby objects is enormous. One of the most coveted applications that could emerge from the envisioned program, which could extend for five years with up to $58 million in funding, is foliage-penetrating imagers for spotting hidden threats—a breakthrough that could revolutionize situational awareness in contested areas. “You would be able to fly a MOABB-enabled helicopter or drone low over a lush forest canopy and be able to effectively peel back the leaves and see a sniper or a tank underneath,” Conway said. ”It could instantaneously give you the range and velocity of everything up to a football field’s distance away with the resolution of a camera. And with accompanying visualization tools, he added, “you would feel like you are on the ground with nothing blocking your vision.”
Other potential applications include collision avoidance systems for small unmanned aerial vehicles (UAVs) maneuvering in tight indoor spaces, precision motor control for robotic limbs and fingers, high-capacity light-based communications and data-transfer systems, and sophisticated gaming or training modules in which LIDARs would open up new worlds of immersive experience just as GPS and motion-sensing accelerometers have done in today’s systems. “Every machine that interacts with the 3D world—whether it is a manufacturing robot, UAV, car, or smartphone—could have a chip- or wafer-scale LIDAR on it,” Conway said.
Page 1 of 2
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Microchip Enters into Partnership Agreement with Delta Electronics on Silicon Carbide Solutions
07/18/2025 | Globe NewswireThe growth of artificial intelligence (AI) and the electrification of everything are driving an ever-increasing demand for higher levels of power efficiency and reliability.
ViTrox’s HITS 5.0 Empowers Global Partners with Innovative Solutions and Stronger Bonds
07/16/2025 | ViTroxViTrox, strives to be the World’s Most Trusted Technology Company, proudly announces the successful conclusion of its fifth edition of High Impact Training for Sales (HITS 5.0), held from 23rd to 27th June 2025 at ViTrox Campus 2.0 and 3.0, located in Batu Kawan Industrial Park, Penang, Malaysia.
Global Citizenship: The Global Push for Digital Inclusion
07/16/2025 | Tom Yang -- Column: Global CitizenshipIt can be too easy to take the technology at our fingertips for granted: high-speed internet, cloud-based collaboration, and instant video calls across continents. Yet, for billions of people, access to these digital tools is a distant dream. As a global community, we must ensure that technology is available to all. Here is how technology is bridging physical, economic, and educational gaps in underserved regions and profoundly reshaping lives.
Microchip Expands Space-Qualified FPGA Portfolio with New RT PolarFire® Device Qualifications and SoC Availability
07/10/2025 | MicrochipContinuing to support the evolving needs of space system developers, Microchip Technology has announced two new milestones for its Radiation-Tolerant (RT) PolarFire® technology: MIL-STD-883 Class B and QML Class Q qualification of the RT PolarFire RTPF500ZT FPGA and availability of engineering samples for the RT PolarFire System-on-Chip (SoC) FPGA.
Infineon Advances on 300-millimeter GaN Manufacturing Roadmap as Leading Integrated Device Manufacturer (IDM)
07/10/2025 | InfineonAs the demand for gallium nitride (GaN) semiconductors continues to grow, Infineon Technologies AG is poised to capitalize on this trend and solidify its position as a leading Integrated Device Manufacturer (IDM) in the GaN market.