Strengthening Our Space Technology Future: Snapshots of Success


Reading time ( words)

NASA_Space2.JPGSlamming on the brakes

The scene is the U.S. Navy’s Pacific Missile Range Facility, Kauai, Hawaii. On June 8, NASA performed a critical Technology Demonstration Mission (TDM) that has major implications for future Mars missions. A Low Density Supersonic Decelerator (LDSD) test involved a rocket-powered, saucer-shaped vehicle that flew to near-space, high above Earth. The balloon-enabled mission evaluated two key technologies for landing robotic and support systems for scientific and human exploration missions on the Red Planet: a Supersonic Inflatable Aerodynamic Decelerator (SIAD), a large doughnut-shaped air brake eyed as a technology to land large payloads on Mars and other destinations that have an atmosphere, and a supersonic ringsail parachute.

That latest test followed up from a June 2014 flight and both missions validated a SIAD. The back-to-back LDSD flights also assessed a state-of-the-art supersonic parachute. It’s the largest parachute ever flown at 100 feet in diameter.

Jurczyk notes that both LDSD flights provided important lessons learned given the inability of the high-tech parachute to maintain its structural integrity.

“That’s what we’re about. We’re pushing technology and some things are going to work as we intended and some things are not,” Jurczyk points out. The LDSD team is now fully engaged in deciphering the physics behind supersonic parachute deployments, “a physically complex problem,” he adds.

Share

Print


Suggested Items

NASA Sounding Rocket Technology Could Enable Simultaneous, Multi-Point Measurements — First-Ever Capability

10/21/2019 | NASA
NASA engineers plan to test a new avionics technology — distributed payload communications — that would give scientists a never-before-offered capability in sounding rocket-based research.

For Climbing Robots, the Sky's the Limit

07/15/2019 | NASA
Robots can drive on the plains and craters of Mars, but what if we could explore cliffs, polar caps and other hard-to-reach places on the Red Planet and beyond? Designed by engineers at NASA's Jet Propulsion Laboratory in Pasadena, California, a four-limbed robot named LEMUR (Limbed Excursion Mechanical Utility Robot) can scale rock walls, gripping with hundreds of tiny fishhooks in each of its 16 fingers and using artificial intelligence (AI) to find its way around obstacles.

Enabling Revolutionary Nondestructive Inspection Capability

06/17/2019 | DARPA
X-rays and gamma rays have a wide range of applications including scanning suspicious maritime shipping containers for illicit materials, industrial inspection of materials and processes, and medical diagnostic and therapeutic procedures.



Copyright © 2019 I-Connect007. All rights reserved.