A Different Way to Make a Cathode May Mean Better Batteries

Reading time ( words)

Lithium nickel manganese cobalt oxide, or NMC, is one of the most promising chemistries for better lithium batteries, especially for electric vehicle applications, but scientists have been struggling to get higher capacity out of them. Now researchers at Lawrence Berkeley National Laboratory (Berkeley Lab) have found that using a different method to make the material can offer substantial improvements.

Working with scientists at two other Department of Energy (DOE) labs—Brookhaven National Laboratory and SLAC National Accelerator Laboratory—a team led by Berkeley Lab battery scientist Marca Doeff was surprised to find that using a simple technique called spray pyrolysis can help to overcome one of the biggest problems associated with NMC cathodes—surface reactivity, which leads to material degradation.


These 3D elemental association maps generated using transmission X-ray tomography show the cathode material made by Berkeley Lab Marca Doeff and her team using spray pyrolysis.

“We made some regular material using this technique, and lo and behold, it performed better than expected,” said Doeff, who has been studying NMC cathodes for about seven years. “We were at a loss to explain this, and none of our conventional material characterization techniques told us what was going on, so we went to SLAC and Brookhaven to use more advanced imaging techniques and found that there was less nickel on the particle surfaces, which is what led to the improvement. High nickel content is associated with greater surface reactivity.”

Their results were published online in the premier issue of the journal Nature Energy in an article titled, “Metal segregation in hierarchically structured cathode materials for high-energy lithium batteries.” The facilities used were the Stanford Synchrotron Radiation Lightsource (SSRL) at SLAC and the Center for Functional Nanomaterials (CFN) at Brookhaven, both DOE Office of Science User Facilities.



Suggested Items

Brittle Pals Bond for Flexible Electronics

05/13/2019 | Rice University
Mixing two brittle materials to make something flexible defies common sense, but Rice University scientists have done just that to make a novel dielectric. Dielectrics are the polarized insulators in batteries and other devices that separate positive and negative electrodes. Without them, there are no electronic devices.

Beyond Scaling: An Electronics Resurgence Initiative

06/05/2017 | DARPA
The Department of Defense’s proposed FY 2018 budget includes a $75 million allocation for DARPA in support of a new, public-private “electronics resurgence” initiative. The initiative seeks to undergird a new era of electronics in which advances in performance will be catalyzed not just by continued component miniaturization but also by radically new microsystem materials, designs, and architectures.

DARPA Researchers Develop Novel Method for Room-Temperature Atomic Layer Deposition

09/01/2016 | DARPA
DARPA-supported researchers have developed a new approach for synthesizing ultrathin materials at room temperature—a breakthrough over industrial approaches that have demanded temperatures of 800 degrees Celsius or more. T

Copyright © 2019 I-Connect007. All rights reserved.