Enabling Extreme New Designs for Optics and Imagers


Reading time ( words)

Developers of imaging systems have long been beholden to certain rules of optics designs so well established and seemingly immutable as to be treated as virtual “laws” of physics. One widely considered pillar of optical design, for example, is that imaging systems must be built from a series of complex and precisely manufactured optical elements arranged linearly. The result of such assumptions is that certain high-performance imagery devices inevitably end up being large and heavy, composed of dozens or more optical elements. DARPA’s EXTREME Optics and Imaging (EXTREME) program aims to break from that well-worn paradigm by introducing engineered optical materials (EnMats) and associated design tools for creating innovative optical systems with improved performance, new functionality, and drastically reduced size and weight.

A special notice was issued today announcing the EXTREME Proposers Day on September 1, 2016, via webcast to familiarize potential proposers with the goals of the program. A Broad Agency Announcement solicitation is also expected to be posted on DARPA’s FedBizOpps page in the near future.

“We’ve seen significant technical advances in recent years in the communities of optical system design, materials science and fabrication, and multiscale modeling and optimization,” said Predrag Milojkovic, DARPA program manager. “EXTREME seeks to capitalize on this momentum by uniting these separate communities to revolutionize optics and imaging as we know it.”

To achieve its goal, EXTREME is focused on developing new EnMats—both two-dimensional metasurfaces as well as 3-D volumetric optics and holograms—that manipulate light in ways beyond classical rules of reflection and refraction. EXTREME also will address multiscale modelling to enable design and optimization of EnMats across vastly different scales, from nanometer to centimeter, for example.

The program aims to demonstrate an optical system with engineered surfaces where control of light propagation is decoupled from a specific geometric shape and can be tuned. EXTREME also seeks to demonstrate a volumetric optical element the size of a sugar cube or larger that can perform a multitude of functions simultaneously in visual and infrared (IR) bands, such as imaging, spectrum analysis, and polarization measurements, among others.

If successful, EXTREME could introduce a new era in optics and imagers for national defense. EXTREME optical components would be lighter and smaller, enabling miniaturization of imaging systems for intelligence, surveillance, and reconnaissance (ISR) applications. The multifunctional nature of these devices could offer improvements in a wide variety of imaging systems by reducing size and weight without compromising performance for systems as diverse as night vision goggles, hyperspectral imagers, and IR search and track systems.

DARPA anticipates that reaching the objectives of the EXTREME program will require formation of cross-cutting teams bringing together expertise from disparate communities and fields, including but not limited to engineered material design and fabrication, multiscale modeling/simulation/optimization, and optical system design. Details on the upcoming Proposers Day are available here.

Share


Suggested Items

Researchers Selected to Develop Novel Approaches to Lifelong Machine Learning

05/07/2018 | DARPA
Machine learning (ML) and artificial intelligence (AI) systems have significantly advanced in recent years. However, they are currently limited to executing only those tasks they are specifically designed to perform and are unable to adapt when encountering situations outside their programming or training.

DARPA's Assured Autonomy Program Seeks to Guarantee Safety of Learning-enabled Autonomous Systems

08/17/2017 | DARPA
Building on recent breakthroughs in autonomous cyber systems and formal methods, DARPA today announced a new research program called Assured Autonomy that aims to advance the ways computing systems can learn and evolve to better manage variations in the environment and enhance the predictability of autonomous systems like driverless vehicles and unmanned aerial vehicles (UAVs).

NASA and Star Wars: The Connections Are Strong in This One

12/21/2015 | NASA
NASA astronauts “use the force” every time they launch … from a certain point of view. We have real-world droids and ion engines. We’ve seen dual-sun planets like Tatooine and a moon that eerily resembles the Death Star. And with all the excitement around the premiere of Star Wars: The Force Awakens, the Force will soon be felt 250 miles above Earth on the International Space Station.



Copyright © 2018 I-Connect007. All rights reserved.