RapidScat Team Investigating Power System Anomaly


Reading time ( words)

Mission managers at NASA's Jet Propulsion Laboratory, Pasadena, California, and NASA’s Marshall Space Flight Center, Huntsville, Alabama, are assessing two power system-related anomalies affecting the operation of NASA’s ISS-RapidScat instrument aboard the International Space Station. RapidScat measures surface wind speeds and directions over the ocean.

RapidScat is currently deactivated and in a stable configuration. A RapidScat project anomaly response team has been formed, working in conjunction with the space station anomaly response team. RapidScat will remain deactivated as the investigation continues.

On Aug. 19, the RapidScat team was notified by the International Space Station payload operations center at Marshall that the station’s Columbus Module experienced an anomaly with one of the two units aboard the station that distribute electrical power to the module. The anomaly resulted in the loss of power to several payloads aboard the space station, including RapidScat. Later that day, as JPL mission managers attempted to reactivate RapidScat, one of the outlets on the power distribution unit experienced an electrical overload. That outlet powers the station’s RapidScat, High-Definition Earth Viewing Experiment (HDEV) and Solar Monitoring Observatory (SOLAR) payloads.

On Aug. 23, the crew manually isolated RapidScat’s external payload site from its Columbus module power circuit. Ground teams then successfully restored power to the affected power distribution unit outlet, and SOLAR and HDEV powered up successfully, with no sign of electrical overload. This action isolated the outlet overload to the RapidScat site. It is not yet known if the fault is on the Columbus or RapidScat side of the power supply interface.

Mission managers are handling the incidents as two separate anomalies: loss of power to multiple payloads connected to the power distribution unit, and the electrical overload on the unit’s outlet during the attempted reactivation of RapidScat.

RapidScat’s survival heaters are currently on (the heaters receive power from a different Columbus power circuit). The heaters are designed to keep the instrument within allowable flight temperatures indefinitely.

RapidScat, launched on Sept. 21, 2014, was developed as a speedy and cost-effective replacement for NASA’s QuikScat satellite. RapidScat’s all-weather measurements of ocean surface wind speed and direction contribute to improved weather and marine forecasting, including hurricane monitoring, as well as to climate studies.

ISS-RapidScat is a partnership between JPL and the International Space Station Program Office at NASA’s Johnson Space Center, Houston, with support from the Earth Science Division of NASA's Science Mission Directorate, Washington. Other mission partners include the Kennedy Space Center, Florida; NASA Marshall; the European Space Agency; and SpaceX.

Share

Print


Suggested Items

NASA Awards Artemis Contract for Lunar Gateway Power, Propulsion

05/27/2019 | NASA
In one of the first steps of the agency’s Artemis lunar exploration plans, NASA announced the selection of Maxar Technologies, formerly SSL, in Westminster, Colorado, to develop and demonstrate power, propulsion and communications capabilities for NASA’s lunar Gateway.

How Mission Control Used Robotics to Successfully Restore Full Power for the Space Station

05/13/2019 | NASA
Using complex robotic work to perform critical maintenance allows astronauts to spend more time working on scientific experiments and helps develop better technologies and procedures for future human and robotic exploration beyond low-Earth orbit.

Graphene Device Could Substantially Increase the Energy Efficiency of Fossil Fuel-powered Cars

06/02/2016 | University of Manchester
A graphene-based electrical nano-device has been created which could substantially increase the energy efficiency of fossil fuel-powered cars.



Copyright © 2019 I-Connect007. All rights reserved.