Lattice Launches 2nd Generation Security Solution


Reading time ( words)

Lattice Semiconductor Corporation, the low power programmable leader, announced the Lattice Mach™-NX FPGA family, the second generation in its successful line of secure control FPGAs. Building on the capabilities of the Lattice MachXO3D™ family announced in 2019, Mach-NX FPGAs deliver heightened security features and the fast, power-efficient processing needed to implement a real-time Hardware Root-of-Trust (HRoT) on future server platforms, as well as computing, communications, industrial, and automotive systems. Mach-NX marks the third FPGA family developed on the Lattice Nexus™ FPGA platform in a year.

“The race is on between bad actors trying to exploit firmware vulnerabilities and developers designing server platforms with the security features and performance to stop them,” said Patrick Moorhead, president and founder of Moor Insights & Strategy. “Protecting systems requires a real-time HRoT with support for stronger cryptography algorithms like ECC 384 and new, robust data security protocols like SPDM. Lattice’s Mach FPGA families can simplify and accelerate implementation of these technologies for server OEMs looking to secure their platforms against cyberattack and IP theft.”

Esam Elashmawi, Chief Strategy and Marketing Officer at Lattice, added: “Securing systems against unauthorized firmware access goes beyond establishing a HRoT at boot. It also requires that components used to build the system are not compromised as they move through the global supply chain. When combined with the additional protection afforded by our SupplyGuard security service, Lattice Mach-NX FPGAs can protect a system throughout its entire lifecycle: beginning at the time components start moving through the supply chain, through initial product assembly, end-product shipping, integration, and throughout the product’s operational lifetime.” 

Building on the system control capabilities of the Mach family, Mach-NX FPGAs combine a secure enclave (an advanced, 384-bit hardware-based crypto engine supporting reprogrammable bitstream protection) with a logic cell (LC) and I/O block. The secure enclave helps secure firmware, and the LC and I/O block enable system control functions such as power management and fan control. Mach-NX FPGAs can verify and install the over-the-air firmware updates that keep systems compliant with evolving security guidelines and protocols. The Mach-NX FPGA’s parallel processing architecture and dual-boot flash memory configuration provide the near instantaneous response times needed to detect and recover from attacks (a level of performance beyond the capabilities of other HRoT platforms like MCUs). Mach-NX FPGAs will support the Lattice Sentry™ solutions stack, a robust combination of customizable embedded software, reference designs, IP, and development tools to accelerate the implementation of secure systems compliant with NIST Platform Firmware Resiliency (PFR) Guidelines (NIST SP-800-193).

Share

Print


Suggested Items

'Eyes' for the Autopilot

07/05/2019 | TUM
Automatic landings have long been standard procedure for commercial aircraft. While major airports have the infrastructure necessary to ensure the safe navigation of the aircraft, this is usually not the case at smaller airports.

DARPA Tests Advanced Chemical Sensors

05/03/2019 | DARPA
DARPA’s SIGMA program, which began in 2014, has demonstrated a city-scale capability for detecting radiological and nuclear threats that is now being operationally deployed.

Researchers Selected to Develop Novel Approaches to Lifelong Machine Learning

05/07/2018 | DARPA
Machine learning (ML) and artificial intelligence (AI) systems have significantly advanced in recent years. However, they are currently limited to executing only those tasks they are specifically designed to perform and are unable to adapt when encountering situations outside their programming or training.



Copyright © 2021 I-Connect007. All rights reserved.