Rice Lab Uses Laser-Induced Graphene Process to Create Micron-Scale Patterns in Photoresist


Reading time ( words)

A Rice University laboratory has adapted its laser-induced graphene technique to make high-resolution, micron-scale patterns of the conductive material for consumer electronics and other applications. 

Laser-induced graphene (LIG), introduced in 2014 by Rice chemist James Tour, involves burning away everything that isn’t carbon from polymers or other materials, leaving the carbon atoms to reconfigure themselves into films of characteristic hexagonal graphene.

The process employs a commercial laser that “writes” graphene patterns into surfaces that to date have included wood, paper and even food.

The new iteration writes fine patterns of graphene into photoresist polymers, light-sensitive materials used in photolithography and photoengraving. Baking the film increases its carbon content, and subsequent lasing solidifies the robust graphene pattern, after which unlased photoresist is washed away.

Details of the PR-LIG process appear in the American Chemical Society journal ACS Nano.

“This process permits the use of graphene wires and devices in a more conventional silicon-like process technology,” Tour said. “It should allow a transition into mainline electronics platforms.”

The Rice lab produced lines of LIG about 10 microns wide and hundreds of nanometers thick, comparable to that now achieved by more cumbersome processes that involve lasers attached to scanning electron microscopes, according to the researchers. 

graphene_rice.jpg

Achieving lines of LIG small enough for circuitry prompted the lab to optimize its process, according to graduate student Jacob Beckham, lead author of the paper. 

“The breakthrough was a careful control of the process parameters,” Beckham said. “Small lines of photoresist absorb laser light depending on their geometry and thickness, so optimizing the laser power and other parameters allowed us to get good conversion at very high resolution.” 

Because the positive photoresist is a liquid before being spun onto a substrate for lasing, it’s a simple matter to dope the raw material with metals or other additives to customize it for applications, Tour said. 

Potential applications include on-chip microsupercapacitors, functional nanocomposites and microfluidic arrays.

Co-authors are undergraduate John Tianci Li, alumnus Michael Stanford and graduate students Weiyin Chen, Emily McHugh, Paul Advincula, Kevin Wyss and Yieu Chyan of Rice; and alumnus Walker Boldman and Philip Rack, a professor and Leonard G. Penland Chair of Materials Science and Engineering at the University of Tennessee, Knoxville. Tour is the T.T. and W.F. Chao Chair in Chemistry as well as a professor of computer science and of materials science and nanoengineering at Rice.

The Air Force Office of Science Research, the National Science Foundation and the Department of Energy supported the research.

Share

Print


Suggested Items

Uncertainties in the Market Rise while a Bounce in NAND Flash Prices Remains Unlikely in 3Q

06/20/2019 | TrendForce
According to the latest investigations by DRAMeXchange, a division of TrendForce, demand for smartphones and servers go below expected levels in 2019 as the US-China trade dispute heats up.

Brittle Pals Bond for Flexible Electronics

05/13/2019 | Rice University
Mixing two brittle materials to make something flexible defies common sense, but Rice University scientists have done just that to make a novel dielectric. Dielectrics are the polarized insulators in batteries and other devices that separate positive and negative electrodes. Without them, there are no electronic devices.



Copyright © 2021 I-Connect007. All rights reserved.