New LED with Luminescent Proteins


Reading time ( words)

Scientists from Germany and Spain have discovered a way to create a BioLED by packaging luminescent proteins in the form of rubber. This innovative device gives off a white light which is created by equal parts of blue, green and red rubber layers covering one LED, thus rendering the same effect as with traditional inorganic LEDs but at a lower cost.

Increasingly popular LEDs, or light-emitting diodes, are the light of choice for the European Union and the United States when it comes to creating lighting devices of the future. This preference can be attributed to the fact that LEDs are more efficient than traditional incandescent bulbs and more stable than energy-efficient light bulbs.

Despite their advantages, however, LEDs are manufactured using inorganic materials that are in short supply -such as cerium and yttrium-, thus meaning that they are more expensive and difficult to sustain in the long run. Additionally, white LEDs produce a colour that is not optimal for eyesight since they lack a red component that can psychologically affect individuals exposed to them for long periods of time.

Now, however, a German-Spanish team of scientists has drawn inspiration from nature's biomolecules in search of a solution. Their technique consists in introducing luminescent proteins into a polymer matrix to produce luminescent rubber. This technique involves a new way of packaging proteins which could end up substituting the technique used to create LEDs today. Details are published in the journal 'Advanced Materials'.

"We have developed a technology and a hybrid device called BioLED that uses luminescent proteins to convert the blue light emitted by a 'normal' LED into pure white light", explains Rubén D. Costa to Sinc, a researcher at the University of Erlangen-Nürnberg (Germany) and co-author of the study.

It is always necessary to have either a blue or an ultraviolet LED to excite the rubbers that are put over the LED in order to make it white. In other words, we can combine blue LED/green rubber/red rubber, or ultraviolet LED/blue rubber/green rubber/red rubber. The result is the first BioLED that gives off a pure white light created by similar parts of the colours blue, green and red, all while maintaining the efficiency offered by inorganic LEDs.

Share

Print


Suggested Items

Graphene-based Transparent Electrodes for Highly Efficient Flexible OLEDs

06/06/2016 | KAIST
The arrival of a thin and lightweight computer that even rolls up like a piece of paper will not be in the far distant future. Flexible organic light-emitting diodes (OLEDs), built upon a plastic substrate, have received greater attention lately for their use in next-generation displays that can be bent or rolled while still operating.



Copyright © 2021 I-Connect007. All rights reserved.